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Abstract— Remote sensing increasingly has become an impor-
tant tool for forest management. In the development of forest
metrics from remote-sensing data, currently many models omit
the individual leaf bidirectional scattering distribution function
(BSDF). Past studies, and the currently available data, often
do not adequately incorporate transmission, cover the broader
reflective domain, and/or incorporate models to extend to any
illumination and view angle combination. We estimated broadleaf
bidirectional transmittance distribution functions (BTDFs) in
this study using the goniometer of the Rochester Institute
of Technology-Two (GRIT-T), which records spectral data
in the UV-A through shortwave infrared (SWIR) spectral
regions (350–2500 nm). We measured three species of large tree
leaves, Norway maple (Acer platanoides), American sweetgum
(Liquidambar styraciflua), and northern red oak (Quercus rubra).
We accurately modeled leaf BTDF with extension to any illumina-
tion angle, viewing zenith, and azimuthal angle through nonlinear
regression to a physically-based microfacet BTDF. The model fit
showed a mean of less than 7% normalized root-mean-squared
error (NRMSE) spectrally from 450 to 2300 nm (lower and upper
wavelength range omitted due to detector noise). The microfacet
models provide highly useful physical quantities such as a
relative roughness, index of refraction, and absorption, which
are all directly related to leaf optical properties. These physical
quantities have implications for plant physiology, vegetation
remote sensing, and physics-based image generation. Specifically,
the accuracy of radiative transfer modeling in forest canopies
depends on rigorous representations of leaves, and this increase
in accuracy can lead to the development of higher fidelity data
processing algorithms for remote sensing. Data and programing
scripts are available at- http://dx.doi.org/10.21227/yjek-2059

Index Terms— Bidirectional scattering distribution func-
tion (BSDF), bidirectional transmittance distribution function
(BTDF), goniometer, hyperspectral, leaf optical properties,
remote sensing, spectroradiometer.

I. INTRODUCTION

CHARACTERIZATION of leaf anisotropic scattering has
implications for plant physiology, vegetation remote

sensing, and physics-based image generation. In most
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remote-sensing simulations, past work has assumed leaves
in a plant canopy followed a Lambertian assumption or
alternatively used generic bidirectional scattering distribution
function (BSDF) models. However, we believe leaf-level
BSDF measurements and estimates are necessary for fully
understanding light transport in canopies. Such measurements
would enable scaling from leaf- to canopy-level, or to even
regional-level, all the while ensuring high fidelity in the
scaling of leaf optical properties.

The BSDF comprises both the bidirectional reflectance
distribution function (BRDF) [1]–[3] and the bidirectional
transmittance distribution function (BTDF) [4], [5]. Because
the BSDF is based on infinitesimals, it cannot be directly
measured [1]. Instead, we measure the biconical reflectance
factor (BCRF) and biconical transmittance factor (BCTF). The
BCRF is an estimate of the bidirectional reflectance factor
(BRF), where BRDF = BRF

π
, with the same relationship

holding true for the BCTF and bidirectional transmittance
function (BTF). Therefore, any reference to BRDF or BTDF
measurements, in this or other publications, is in fact an
estimate from the BCRF or BTDF respectively [1], [2]. Previ-
ous research and publicly-available single-leaf BSDF data are
extremely limited, even though the importance of leaf-level
scattering properties are well known.

Recently, we developed a broad leaf BSDF database [6]
composed of both leaf BRDF [7] and the leaf BTDF,
which is the focus of the study presented here. Prior to the
development of the broad leaf BSDF database, the Institut
de Physique du Globe de Paris, Paris, France, maintained the
only known leaf-level BSDF data. Their database includes
seven species and nine total samples, based solely on BRDF
measurements [8]. That database comprises data for leaf-level
BRDF characterizations used by Bousquet et al. [9], who
examined the spectral and directional variations of leaf BRDF
by making measurements of three leaf types: laurel, European
beech, and hazel, for wavelengths between 480 and 880 nm,
at 1-nm intervals. Their spectral modeling used a summation
of both a specular and a diffuse component along with a
least-squares nonlinear minimization. Their fit to the specular
component used a Cook and Torrance [10] microfacet,
physically-based model, while their fit of the diffuse compo-
nent used a simple Lambert coefficient. Their results exhibited
limited variance of the specular component throughout the
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visible and near-infrared wavelengths, while producing
significant anisotropic scattering in the chlorophyll absorption
regions of the spectra. Biliouris et al. [11] also made leaf
BCRF measurements, but examined statistical properties of
within-species variation from 60 European beech tree leaves
over the spectral range of 400–2500 nm. A quantile–quantile
study showed that the leaves belonged to the same distribution
and population. Their BRDF modeling incorporated the
semiempirical Rahman–Pinty–Verstraete (RPV) model [12].
Their approach required a different set of parameters for
each illumination angle, and the poor generalization to other
illumination angles was attributed to the fact that the RPV
model was designed as a canopy-level, heterogeneous model.

Compared with BRDF analyses, leaf-level BTDF studies are
far more scarce, as studies have typically assumed that the con-
tribution of directional transmission to remote-sensing data is
minimal [13], [14], and the experimental setup requires greater
complexity [15]. Walter-Shea [16] completed one of the first
studies on directional scattering from leaves that included
BTDF. This study specifically examined corn and soybean
BSDF, and although the BTDF data were largely diffuse in the
visible spectrum, the soybean measurements exhibited distinct
maxima that were particularly pronounced at nadir illumi-
nation. That study was limited in spectral resolution using
only two broadband sensors: one in the visible and the other
in the near-infrared spectral domain. Brakke et al. [17] and
Brakke [18] similarly noted a maximum for nadir illumination
and observation when characterizing leaf BTDF. In their study,
they characterized only the principle plane of oak and maple
leaves at the single wavelength of 632.8 nm using a helium
neon laser. Greiner et al. [19] also used a single-laser wave-
length, 1064 nm, to estimate the principle plane leaf BSDF
of sugar maple and eastern cottonwood trees. During their
preliminary experiments, they found a correlation between
leaf freshness and the scattering amplitudes, with dryer leaves
being more reflective and less transmissive. They were able
to fit their BTDF data with a second-order polynomial. Even
though their study was highly detailed, they nevertheless
normalized their models in such a way that would make it
difficult to extract the actual BSDF. In turn, the study by
Combes et al. [15] was able to capture leaf BTDF estimates
beyond the principle plane with an in-house goniometer,
dedicated to the study of leaf bidirectional optical properties.
However, their study concentrated on leaf BRDF, only reported
the BTDF estimates of a beech leaf and concluded that the
BTDF is largely isotropic, with increased transmission along
the principle plane.

Leaf-level directional transmittance arguably is of great
consequence for certain remote-sensing data. This may par-
ticularly be true when modeling lidar in forest canopies,
as leaf surfaces can be >50% transparent for lidar sys-
tems that operate at near-infrared wavelengths [20]. However,
recent studies leveraging the new information in this work
have shown negligible contribution for airborne lidar at 550,
1064, and 1550 nm [21]. Future research will address the
generality of this result by considering other remote-sensing
modalities and scales. For instance, remote-sensing systems
that capture photosynthetically active radiation (PAR) from

beneath the canopy are also affected by leaf-level transmission
scattering [22]. However, most remote-sensing simulations in
vegetation canopies presume purely Lambertian transmission,
or even worse, assume that leaves are opaque [13], [14],
mainly due to the lack of leaf-level BTDF data. Previous
studies have produced data limited in spectral extent, lacked
models to characterize directional scattering at angles beyond
those measured, and used methods that were not extensible to
remote-sensing simulations. Consequently, the objectives of
this study are to 1) develop a method for accurate leaf BCTF
spectral measurements, from the visible through shortwave
infrared (SWIR); 2) evaluate a BTDF model which fits mea-
surements and generalizes to all possible illumination and view
directions; and 3) analyze leaf BTDF features and differences
between measured species.

This study therefore made high spectral resolution
(350–2500 nm) measurements with the goniometer of the
Rochester Institute of Technology-Two (GRIT-T) [23], [24],
capturing directional transmission optical properties of three
broadleaf tree species (Norway maple, American sweetgum,
and northern red oak) [7]. Since GRIT-T previously had
exclusively been used for reflectance measurements [23]–[28],
we had to develop a new approach to collect transmission data.
We then evaluated our measurements against past measure-
ments in the literature. BSDF models were evaluated, and we
ultimately developed a modeling technique that accurately fit
the observed leaf BTDF measurements. Our single-scattering
(specular) versus diffuse fraction analysis also explains at
which wavelengths the directional transmission contribution
is largest.

II. MEASUREMENT METHODS

We used GRIT-T to capture leaf biconical spectral transmit-
tance measurements from 350 to 2500 nm. GRIT-T provides
automation capability and high precision that maintains the
same spot on the target within 10 mm [23], [24]. Extensive
use of GRIT-T has proven its capability in the laboratory and
field environments [7], [24]–[28].

We collected and measured the BCTF of leaves from
Norway maple (Acer platanoides), American Sweetgum (Liq-
uidambar styraciflua), and northern red oak (Quercus rubra),
trees in Rochester, NY, USA in August of 2019. For each
species, we collected the leaf samples from the same tree,
selecting larger leaves, which typically are thin sunlit leaves.
Although these leaves may not be representative of all leaves
in the canopy, the large surface area was needed to fill the field-
of-view (FOV) of the goniometer while ensuring an adequate
viewing margin. The three species had different observable
features: the oak leaves exhibited a glossy epidermis and
structural stiffness due to a thick cuticle layer, while the
sweetgum leaves manifested a glossy surface and greater
flexibility, and the maple leaves appeared matte and flexible,
also being the thinnest. An example of the three leaf types are
shown in Fig. 1.

After collection, leaf samples were immediately placed in
airtight bags and stored at nominal refrigeration temperatures.
We completed the measurements on the same day to minimize
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Fig. 1. Example images of leaves used in transmission measurements. (From
left to right) Norway maple, American sweetgum, and northern red oak.

leaf optical changes. Each measurement cycle consisted of a
single illumination zenith angle, with the goniometer moving
to 49 different observation angles along 15◦ zenith steps
(0–60◦), and 30◦ steps in azimuth (0–330◦). The measurement
cycle was repeated for each leaf type, with source zenith
angles of 0◦, 15◦, 30◦, and 45◦, using a new leaf of the same
species to minimize leaf drying effects. Scans along azimuth
planes allowed for repeated nadir measurements to confirm
consistency. We chose the specific scan density in an effort to
minimize the scan time and thereby prevent leaf drying [19],
while also capturing the transmittance directional structure.
We maintained a 0.5 m distance between the sample and the
goniometer. A 2.6-cm FOV at 0◦ zenith and a 5.2-cm FOV at
60◦ zenith angle resulted from using a 3◦ fore-optic. Though
a statistical analysis through many repeated measurements
was not accomplished due to the difficulty in making the
measurements, some of the leaf-to-leaf variability was
accounted for when modeling the BTDF by incorporating a
new leaf at each source angle.

Transmission measurements proved to be complex, since
GRIT-T had not previously been used in a transmission
measurement configuration. A Solux halogen 50 W, 4700 K,
36◦ spread light was used as the illumination source, with a
diffuser to ensure uniform illumination. To prevent saturation
when capturing the directionality of the light source, we used
a neutral density filter. To capture the source directionality,
our measurements densely sampled in 2◦ in both zenith and
azimuthal increments over a 20◦ cone, centered on the light
source, along with sparser sampling using 20◦ zenith and
60◦ azimuthal increments. To interpolate these measurements,
we first projected the light-source measured radiance values
onto a two-dimensional polar projection and then performed a
cubic interpolation over a 1◦ grid of azimuth and zenith angles.
The interpolated polar plot and source spectra appear in Fig. 2.
As seen in the interpolated polar plot, the light source spread
was less than 5◦.

Preliminary experiments to collect transmission data
resulted in anomalous artifacts due to the light source distance,
stray light, leaf freshness, and insufficient filling of the FOV of
the sensor. The preliminary experiments dictated the setup that
was used in this study. A “light box” was created that housed
the light source with an attached 7.6-cm-diameter pipe on a
hinge to appropriately direct the light. To achieve alignment
of the source at the four illumination directions, we moved
the light source and oriented it within the light box, while
ensuring that the sample remained level. We placed a disk

Fig. 2. Left polar plot displays the light source measurement at 1064 nm
after interpolation. The right plot is the measured radiance spectrum of the
Solux halogen lamp, with the neutral density filter at the 0◦ source position.
Both plots are in spectral radiance units of

�
W · cm−2 · sr−1 · nm−1

�
.

Fig. 3. (Left figure) Light box apparatus with labeled components. (Right
image) Experimental setup with GRIT-T. The laboratory is configured with
absorbing material and isolated from external illumination in order to prevent
stray light.

with a 5 cm aperture near the entry of the pipe to serve
as a holder for a neutral density filter, which we used to
prevent saturation during direct light source characterizations.
The disk also reduced stray reflections off the sides of the
light-directing tubing. We also covered the apparatus with
optical black felt to prevent stray light. The sample rested on
top of the tubing about 40 cm above the light source (for
the nadir configuration). We placed each leaf in a sample
holder that served to flatten the leaf at the edges while also
ensuring the leaf filled the sensor FOV. The effect was to
minimize large undulations and asymmetries, while keeping
the microstructure intact. We covered the inside surface of the
tubing and the sample holder with flat black “high heat” paint,
and to assess residual stray light reflecting off the interior sides
of the tubing, we collected spectrometer measurements. All
assessments showed less than one tenth of a percent of spectral
reflectance off the sides of the tubing, across all wavelengths
(350–2500 nm). We then made transmission measurements
with the light source at 0◦, 15◦, 30◦, and 45◦ from zenith
under the leaf, while GRIT-T measured the transmitted light
from above. To achieve the preferred distance to the sample,
we placed GRIT-T on raising struts. The leaf was placed each
time with the stem along the principle plane, consisting of the
illumination and leaf normal vectors. The full experimental
setup appears in Fig. 3.

We calculated the leaf BCTF by dividing the goniometer
radiance values at a particular azimuth and zenith by the
radiance value that would result from a lossless perfect diffuser

BCTF = L(θ, φ)sample

Ldiff_lossless
. (1)
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We determined the radiance of a lossless perfect diffuser for
a given light source configuration using measurements of a
broadband hybrid diffuser (diffuse plate) [29], with the same
scan pattern as the leaves. Integrating over the radiance mea-
surements from the diffuser and dividing over the Lambertian
solid angle, π, yield the perfectly diffuse radiance

Ldiff =
� 2π

0

� π

0 L(θ, φ) sin(θ)dθdφ� 2π

0

� π

0 sin (θ)cos(θ)dθdφ = π
(2)

where Ldiff is the perfectly diffuse radiance and L(θ, φ)
represents the measured radiance values. We performed the
integration over interpolated radiance values at one-degree
azimuth, �φ, and zenith, �θ , intervals. For notational brevity,
even though the radiance values are also all wavelength
dependent, they do not appear explicitly in the equations.
We filled in angles beyond those measured with nearest
neighbor interpolation. In order to find the lossless perfectly
diffuse radiance (no absorption or reflection), we then divide
Ldiff by the directional hemispherical transmittance (DHT) of
the plate

Ldiff_lossless = Ldiff

DHTplate
. (3)

We computed DHTplate by characterizing the DHT with a
0.5-m-diameter integrating sphere, thereby taking advantage
of étendue reciprocity between the hemispherical source and
the direction of observation [30]. A plasma and halogen
source illuminated the integrating sphere through ports. One
ASD FieldSpec 4 Hi-Res spectroradiometer, with bare fiber,
measured the internal radiance of the sphere, while a sec-
ond was placed outside the sphere, collecting spectral data
through the port-hole at a distance of 20 cm, with a 5◦
fore-optic. The diffuse plate then was placed directly on the
porthole. We made measurements at 0◦, 15◦, 30◦, and 45◦
look angles. We also made measurements without the plate in
place (external sensor recorded spectral radiances ∼5% higher
than the internal sensor) in order to normalize the two sensors
to each other and reduce noise. Then, we determined DHT
by dividing the spectral radiance from the external sensor
by the spectral radiance from the internal sensor. When the
sensor normalization was applied, the DHT slightly dropped
in amplitude and the data were considerably smoothed. Five
sets of measurements taken at each of the four viewing
angles showed insignificant variation. We averaged each of
the five measurements to produce a curve for a particular
viewing angle and then computed the mean of the four viewing
angles to produce a single transmittance curve to be used in
calculations. Artifacts observed in the water absorption region
between 1850 and 2300 nm likely stem from backscatter
from the plate back into the sphere. Backscattered light has a
longer path length and more attenuation results in parts of the
spectrum affected by water absorption. Therefore, we used
linear interpolation between 1850 and 2300 nm to produce
the final DHT of the plate. Due to minimal observed variance
between look angles, we were able to use the same curve
for the DHT at each illumination angle when computing leaf
transmittance. We also computed DHTplate by dividing Ldiff

by Ldiff light , using the Ldifflight calculated in (2), but from direct

Fig. 4. (Left image) Experimental setup of the integrating sphere with
the external spectroradiometer. The fiber for the internal sensor is also seen
coming out of the bottom of the sphere, and the diffuse plate is mounted
against the porthole. (Right plot) DHTplate calculated for each view angle,
the vendor calibration from Edmund Optics [29] at nadir, and the transmission
calculated when using GRIT-T at nadir illumination.

measurements of the light source (small diffuser plate directly
over bulb). This only worked for nadir illumination because
at off-nadir angles, the light source distance is greater and
the small diffuser directly in front of the light did not fill the
sensor FOV. An image of the experimental setup and a plot of
the calculated DHT appear in Fig. 4. The transmission curves
calculated from the integrating sphere data at all view angles
(0–45◦) in the plate transmission plot lie between the vendor
calibration (only measured out to 1250 nm) and the nadir
GRIT-T measurement. We ultimately used the curve labeled
“Mean DHT,” i.e., the mean of all the view angles from the
integrating sphere as the DHT for leaf BCTF calculations.

The BCTF calculation tends to amplify noise in parts of the
spectrum where the signal is low. We therefore applied a 10-
nm moving average filter via 1-d kernel convolution to reduce
noise. We observed very few outliers since we had taken extra
precautions in aligning the experimental setup while ensuring
the sample filled the sensor FOV. We identified and removed
a few existing outliers in the data below the 25th percentile
interquartile range (IQR) [31].

III. MEASUREMENT RESULTS

For each leaf type and source zenith angle, Fig. 5 presents
overlaid spectral plots recorded for each observation vector.
Fig. 5 allows for a top-level understanding of the BCTF mea-
surements across the spectrum with the magnitudes represent-
ing the overall transmittance and the spread between spectral
lines representing a larger specular component. Fig. 5 shows a
general trend, where thicker leaf cuticle correlates with more
diffuse leaf BCTF (less spread between the spectral lines at
different sensor viewing angles). Also, as the illumination
zenith angle increases, the leaf also becomes more diffuse.
The only exception to this is the sweetgum at 45◦ illumination
angle, likely due to leaf-to-leaf variability.

In Fig. 5, noise is visible at both ends of the spectrum,
and is most apparent above 2000 nm. The requirement of
shorter sampling times to reduce the effects of leaf drying
increased this noise level. For these reduced integration times,
further investigation highlighted low signal-to-noise ratios
(SNRs), i.e., less than 10, for wavelengths below 450 nm and
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Fig. 5. Spectral transmittance plots (350–2500 nm) with each of the
measurements of the 49 sensor locations overlaid for each leaf type (maple,
sweetgum, and oak) at each source zenith angle (0◦, 15◦ , 30◦, and 45◦).

above 2000 nm, while the remaining spectrum exhibited SNRs
greater than 500. Under the assumption that the signal will
vary slowly over this interval (excluding known vegetation
features, e.g., red edge) [7], we computed the mean and
standard deviation of the SNR using a 10-nm sliding window.

To assess measurement accuracy, we made a qualitative
comparison of the DHT to previous studies of the same leaf
type. To obtain the DHT, we integrated the estimated BTDF,
ft (θi , φi ; θo, φo), with θi and φi source zenith and azimuthal
angles and θo and φo observation source zenith and azimuthal
angles over the hemisphere, following the method presented
by Schaepman-Strub et al. [2]:

DHT(θi , φi , λ)

=
� 2π

0

� π
2

0
ft (θi , φi ; θo, φo) cos(θo) sin(θo)dθodφo. (4)

We performed the integration on a grid comprised of cubic
interpolated points from a polar projection of the measure-
ments and extended the results beyond measured zenith values
through nearest neighbor interpolation. Our method shows
good agreement with prior measurements as seen in Fig. 6.

The differences seen in our maple DHT plot compared with
that of Hovi et al. [32] are due to variances in the measurement
method and the leaves. The lower signal in the visible is a
result of our use of thin, matured sunlit leaves, which are
typically darker in the visible due to increased chlorophyll
absorption [33], [34]. We also see a difference in the water
absorption bands, attributed to the advanced seasonal stage.
The measurements also take about 12 min to collect, with
some amount of leaf drying expected over this period. The
published integrating sphere measurements performed by Hovi
et al. [32] can be made in a fraction of this time.

Fig. 6. (Left plot) Our calculated DHT for adaxial side of a Norway maple
leaf, with a nadir source. (Right plot) Norway maple leaf DHT presented
by Hovi et al. [32]. Legend labels: SIS is measured with a single integrating
sphere, and DIS is measured with a double integrating sphere. (Figure adapted
with permission of the author, copyright holder).

Another validation exercise is to compare results to pre-
viously published leaf-level data. Combes et al. [15], who
described the capability of the spectrogoniophotometer located
at the Institut de Physique du Globe de Paris (Fig. 7), have
published the only full leaf BTDF known to the authors,
i.e., beyond the principle plane. Though their leaf species
were different, their overall scale was nearly identical to
ours, and we observe similar behavior between the beech leaf
measured by Combes et al. [15] and the maple leaf in this
study. For the specular peak, Fig. 7 shows a general trend
of decreasing amplitude with increasing illumination zenith
angle. The overall shape of the BTDF can be characterized as
having a constant wavelength-dependent diffuse background
component, as well as a more directional specular component.
The specular peak at 660 nm is offset from the principal plane
and opposite to the direction of illumination, as expected, but
tends to remain in place after its original offset with increasing
illumination zenith angle. Comparison of the BTDF at a
high absorption wavelength (660 nm) to a high transmittance
wavelength (1060 nm) shows that the overall BTDF shape
is largely conserved for each illumination zenith angle. The
BTDF at 1064 nm is greater due to a bias caused by the large
diffuse background component and an increase in scale of the
specular component due to higher transmittance.

A comparison of the leaf directional transmittance of the
three leaf species for three wavelengths (550, 1060, and
1550 nm) appears in Fig. 8 for a 15◦ illumination zenith
angle. The maple leaf is the thinnest and most transparent of
the three leaves, thus transmitting the most light, as well as
exhibiting the most directional light for all three wavelengths.
At 550 nm, the sweetgum leaf is slightly more diffuse, and
the oak clearly is the most diffuse with the least transmittance.
This behavior is due to the thicker cuticle layer of the oak,
and glossier surface of the sweetgum leaf, when compared
with the maple. At 1060 nm, the internal leaf structures
absorb minimal light, thus causing a much higher diffuse and
directional component for each of the three leaf types [18].
The oak and sweetgum leaves still exhibit less transmission
and are more diffuse than the maple, but now have similar
scales to each other. At 1550 nm, the sweetgum leaf has
a much stronger water absorption component, causing less
transmittance that is more diffuse.

IV. MODELING METHODS

In order to accomplish our objective to generalize the BTDF
to any source and view angle, we investigated several different
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Fig. 7. (Top row) Previously-published BTDF of a beech leaf at 660-nm wavelength [15] (figure adapted with copyright permissions). (From left to right)
Illumination source is located at zenith angle of 5◦, 25◦ , 45◦, and 65◦ . The axial rings are in 20◦ increments, the dots mark measurement locations, and
the star indicates the illumination direction. (Middle and bottom rows) Measurements from this study on the maple leaf at wavelengths 660 and 1060 nm,
respectively. (From left to right) Illumination angles are marked by a black X at 0◦ , 15◦, 30◦ , and 45◦, while the axial rings are in 10◦ increments. White
space within the polar plot signifies either no data or omitted outlier data. Notice the scale of the BTDF at 660 nm is nearly identical to those previously
published by Combes et al. [15].

Fig. 8. Leaf BTDF at a 15◦ illumination angle. (From top to bottom) Rows
are the maple, sweetgum, and oak leaf measurements. (From left to right)
Wavelengths shown are 550, 1060, and 1550 nm. The illumination angle is
marked by a black X while the axial rings are in 10◦ increments out to 60◦ .
White space within the polar plot signifies either no data or omitted outlier
data.

models, as explained in [7]. We selected the Smith GGX
microfacet model as a starting point, as it had previously been
evaluated for directional transmission [35]–[38]. Microfacet
physically based models have become the standard within the
graphics community, while the Smith GGX model has the
advantage of improved accuracy, accounting for the projected

area of the microfacets [38]. The mathematical symbols and
descriptions for the BTDF model development for this section
are found in Table I.

The model created for this study consists of both a dif-
fuse and specular component, as implemented by Bousquet
et al. [9], but also includes an attenuation factor, T , which
modulates the transmission of the specular component

τ (ωo, ωi ) = τdiff(ωo, ωi ) + τspec(ωo, ωi )T (5)

where τ (ωo, ωi ) is the BTDF, ωo is the view vector, and
ωi is the illumination vector. We assume illumination source
azimuthal isotropy [11] and set the illumination azimuth vector
to zero, making the incident vector (vector pointing toward the
source)

ωi =
⎡
⎣ sin θi

0
cos θi

⎤
⎦ (6)

where θi as the source zenith angle. The observation vector
(vector pointing toward receiver) is then

ωo =
⎡
⎣ sin θo cos φo

sin θo sin φo

cos θo

⎤
⎦ (7)

with φo being the azimuth observation angle and θo the zenith
observation angle. The vectors were coded for θo and φo values
over the hemisphere. This creates an array that is of the size

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on June 04,2021 at 16:38:26 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ROTH et al.: LEAF BTDF ESTIMATES AND MODELS FOR SELECT DECIDUOUS TREE SPECIES 7

TABLE I

TABLE OF SYMBOLS

[3, Nφo , Mθo ], with Nφo being the number of φo samples and
Mθo being the number of θo samples. The diffuse component of
the BTDF is constant over all incident and observation vectors
and is defined according to

τdiff (ωo, ωi ) = kL

π
(8)

where kL is the Lambert coefficient. Note that the BTDF is also
a function of wavelength, but this is not explicitly shown in the
equations here for simplicity. The specular component fit used
a modified dual-microfacet model proposed by Dai et al. [39],
while also incorporating the GGX distribution of microfacets
and Smith shadow-masking function, outlined in [36]–[38], for
the microfacet surfaces.

Fig. 9. Dual-microfacet model approximates an actual material slab (b) as a
linear combination of two slabs. One slab (c) is top-side rough and bottom-
side smooth, while the (d) second is top-side smooth and bottom-side rough
(figure adapted from Dai et al. [39] with permission from publisher). Image
(a) is not shown, but represents a dual sided smooth slab in [39].

The specular component is a modified dual-microsurface
model, which models scattering by a pair of parallel micro-
surfaces as a log-space mixture of the BTDFs of two basis
slabs

ln τspec(ωo, ωi ) = α2 ln τt(ωo, ωi )+(1−α2) ln τb(ωo, ωi ) (9)

where 0 ≤ α2 ≤ 1 weights the relative contribution of each
slab. We use this slab-based approach to more realistically
describe light scattering into a region of higher refractive
index, i.e., the interior of the leaf, then back out into air.
As shown in Fig. 9, the first slab consists of a rough top-side
and smooth bottom-side, while the second is the opposite
configuration, a smooth top-side and rough bottom-side. Note
we use single scattering Fresnel facets for our model.

This decomposition allows for efficient computing, as the
smooth surface results in only a Fresnel refraction and
dampening, without diffusion. The model eliminates the
computationally-expensive convolution needed if both top and
bottom sides were rough. One of the major assumptions in the
model is that the offset between the locations of the refraction
at each of the two surfaces can be ignored. Another assumption
is that the BTDF can be approximated as a combination of
the two types of slabs mentioned. The combination of the
two models occurs in log space, as the transmission effect
is multiplicative. The model therefore is a kind of geometric
interpolation, such that α2 = (1/2) is a proper geometric
mean. The dual microfacet model derivations are described
in [39], while for completeness we provide here the required
equations used in model computations. The top-side rough
term obeys

τt(ωo, ωi ) =

����∂ω̄ht

∂ω̄o

������ωi · ωht

���1 − F
�
ωi , ωht

��

×
�
1 − F

�
ω�

i , ωz+
��

G2
�
ωi , ωo, ωht

�
D

�
ωht

�
|ωi · ωz+ ||ωo · ωz+ |


.

(10)

The equation consists of Fresnel terms F
�
ωi , ωht

�
and F

�
ω�

i , ωz+
�
, the masking-shadowing G2

�
ωi , ωo, ωht

�
,

the microfacet distribution D
�
ωht

�
, and the Jacobian��(∂ω̄ht /∂ω̄o)

�� to relate the micro- to macro-surface. The terms
in the denominator result from the fundamental constraint that
the projected area of the geometric surface equals the projected
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area of visible microsurfaces [38]. The Jacobian term equals����∂ω̄ht

∂ω̄o

���� =
��ωo · ωom

����ωom · ωht

���
nt
ni

�2�
ωi · ωht + ωom · ωht

�2
. (11)

The microfacet normal vector ωht is

ωht = −ωi + ωo − ����ωo − ωom

����ωz+����ωi + ωom

���� . (12)

The internal observation vector, ω�
o, derives from Snell’s law,

which for the 3-D model geometry, assuming the z-axis is
perpendicular to the slab surface, has the form

ω�
o = ni

nt

⎡
⎢⎢⎣

ωox

ωoy

−
��

nt
ni

�2 − ω2
ox

− ω2
oy

⎤
⎥⎥⎦ (13)

where ωom obeys

ωom = nt

ni
ω�

o (14)

and where nt and ni are the index of refraction of the
material and air, respectively. The internal incident vector onto
the second plate is merely the negative of the outgoing vector
from the first plate

ω�
i = −ω�

o (15)

and the surface normal for the second plate is just the macro
surface normal vector

ωz+ =
⎡
⎣ 0

0
1

⎤
⎦. (16)

We used the shadow masking function for transmission,
defined by Heitz et al. [37]

G2 = B(1 + �(ωi ), 1 + �(ωo)) (17)

with B being the Beta function and � defined as

�(ωo) =
−1 +

�
1 + 1

a(ωo)
2

2
(18)

and

a(ωo) = 1

αtanθo
(19)

where α, the roughness, is a fundamental model fitting para-
meter.

Unlike in [39], who found their distribution function through
regression, we used the GGX distribution, D

�
ωht

�
, which

obeys

D(ωht ) = X+�
ωht · ωz+

�
πα2 cos4 θm

�
1 + tan2 θm

α2

�2 . (20)

X+ is the step function equaling one when ωht ·ωz+ is greater
than one and zero when ωht ·ωz+ is less than or equal to zero.

Note that ωht · ωz+ = cosθm , which is the z component of the
ωht unit vector. The Fresnel factor, as shown in [36], obeys

F(ωi , ωm) = 1

2

(g − c)2

(g + c)2



1 + (c(g + c) − 1)2

(c(g-c) + 1)2

�
(21)

g =
�

n2
t

n2
i

− 1 + c2 (22)

c = ��ωi · ωz+
��. (23)

Note that for air, ni ≈ 1. For the second surface Fresnel
calculation, caution must be taken to switch the indices of
refraction, because now the light is moving from a region with
a larger index of refraction to a lower index of refraction.

Thus, for the second interface g =
�

(n2
i /n2

t ) − 1 + c2 and

c = ��ω�
i · ωz+

��.
The top-side smooth, bottom-side rough slab BTDF,

τb(ωo, ωi ), formula similarly obeys

τb(ωo, ωi ) =

����∂ω̄hb

∂ω̄o

������ω�
i · ωhb

���1 − F
�
ω�

i , ωhb

��

×
�
1 − F

�
ω�

i , ωz+
��

G
�
ωi , ωo, ωhb

�
D

�
ωhb

���ω�
i · ωz+

��|ωo · ωz+ |



(24)

with the major difference this time being that all functions
are now for a smooth top-side and a rough bottom-side. The
Jacobian term now is����∂ω̄hb

∂ω̄o

���� =
��ωo · ωhb

���
ωim · ωhb + ωo · ωhb

�2 . (25)

The bottom-side microfacet normal now becomes

ωhb = −ωi + ωo + ����ωi − ωim

����ωz+����ωo + ωim

���� (26)

with

ω�
i = ni

nt

⎡
⎢⎢⎣

ωix

ωiy��
nt
ni

�2 − ω2
ix

− ω2
iy

⎤
⎥⎥⎦ (27)

ωim = nt

ni
ω�

i . (28)

The Fresnel terms, masking-shadowing term, and microsur-
face distribution function are all the same as previously defined
for the top-rough and bottom-smooth BTDF. The specular
attenuation model term used Beer’s law [40], incorporating
an optical depth term, β, and normalized length (1/cos

�
θ �

oα

�
)

T (θ �
oα) = e

− β

cos(θ �
oα) . (29)

This approach applied Beer’s law to the BTDF model internal
scattering vector. θ �

oα is a combination of the internal scattering
angles of the two slabs used in the model

θ �
oα = α2θ

�
ot

+ (1 − α2)θ
�
ob. (30)

The α2 term is the same as previously defined in (9) and
determines the weight between the two BTDF calculations
of τt (ωo, ωi ) and τb(ωo, ωi ). There will be a different θ �

oα
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Fig. 10. Comparison of the principle plane BTDF between our modified
dual microfacet model, blue plot lines, and that from reproducing plots from
Walter et al. [36] representing the Smith GGX single-scattering model, red
plot lines. Both are plotted for incident angles at 0◦, 30◦, 60◦, and 80◦ marked
by solid, dashed, dashed-dot, and dotted lines, respectively.

for every observation zenith angle θo, and azimuth angle φo.
This creates an array of transmissions, equivalent in size to
τspec(ωo, ωi ). The fundamental parameters that characterize the
BTDF then are the roughness parameter α, index of refraction
nt , the Lambert coefficient kL, the weight factor α2, and the
optical density β.

We compared our results to the principle plane plots found
in [36] in order to confirm the accuracy of our version
of the dual microfacet model (specular component). One of
the comparisons is seen in Fig. 10. The plots from Walter
et al. [36] described a single scattering surface into a region
of higher index of refraction, so we do not expect the
plots to be the same, but they should exhibit similarities.
We plot τspec(ωo, ωi ) cos(θo) along with scaling factors needed
to match Walter et al.’s [36] published, but uncalibrated
measurements. For single scattering, Walter et al. [36] also
multiplied his results by a radiance-scaling factor of (ni/no)

2

to account for conservation of energy when scattering into a
higher index of refraction. The dual microfacet model does not
require radiance scaling, since light propagation in this model
begins and ends in a region with the same index of refraction.

As expected, the higher illumination incident zenith angles
produce less transmission in the dual microfacet model than
in the single scattering layer. This is primarily due to the
presence of a second interface causing more reflection, as well
as reduced transmission. Also, notice that the locations of the
specular peaks in the dual microfacet model are closer to 180◦
from the incident direction, thus producing less deviation of
emerging rays. This is to be expected, as light rays coming
out of a slab of higher index of refraction will refract back
toward the original incident direction of the first interface.
Stated differently, the light ray would perfectly refract back to
its original direction, if both sides of the slab were perfectly
smooth.

V. MODELING RESULTS

Our model fits used the Levenberg–Marquardt nonlin-
ear least squares minimization from the python package

TABLE II

INITIAL PARAMETER VALUES FOR INVERSION

Fig. 11. NRMSE to the model found from least-squares minimization for
each of the three leaf types, namely, maple, sweetgum, and oak, over the
spectrum (350–2500 nm). The plots are for the four illumination angles: 0◦,
15◦, 30◦, and 45◦, except for the sweetgum leaf which was only fit for the
three illumination angles: 0◦, 15◦ , and 30◦.

LMFIT [41]. The first step consists of concatenating all
directional measurements for each illumination and leaf type.
Similarly, we concatenated the model values at the equivalent
observation angles for the same illumination angles. We then
used least squares minimization according to the following
equation:

X2 =
�

θi ,θo,φo

(τ (ωo, ωi )measured − τ (ωo, ωi )modeled)
2. (31)

Minimization was accomplished for each captured wave-
length in 1-nm steps. Both physical constraints and experi-
mentation allowed us to establish initial values and bounds for
the parameters to be optimized. The initial values and bounds
are given in Table II.

As a metric, we define a normalized root-mean-squared
error by dividing the root-mean-squared error by the
mean. We then computed the normalized root-mean-squared
error (NRMSE) for each measurement cycle at each wave-
length as seen in Fig. 11. We also computed the mean NRMSE
for each leaf type over a narrower wavelength range from
450 to 2300 nm, (in order to exclude high noise wavelength
regions), with results given in Table III. A mean of these values
gives a total NRMSE of 6.8%.

The NRMSE values in Fig. 11 appear to be high, specifically
in a few wavelength bands. This can be explained by the fact
that the model fit encompasses each of the different leaves
at all illumination angles. Another reason is that the model
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TABLE III

MEAN NRMSE VALUES FOR THE 450–2300-nm WAVELENGTH RANGE
FOR THE THREE LEAF TYPES

can only place a symmetrical non-Lambertian component on
the principle axis, while actual measurements may show the
non-Lambertian component slightly off axis due to natural
leaf asymmetries. This scenario is most pronounced where
the Lambertian component is minimized in the absorption
bands. Extremely high NRMSE values are seen below 450 nm
and above 2300 nm where the low detector responsivity
causes significant noise [42]. Also, the leaf transmittance drops
significantly below 450 nm, resulting in lower SNR and larger
relative error.

The fit parameters seen in Fig. 12 are especially noisy
toward longer wavelengths. This is largely due to the higher
noise level of the data in this part of the spectrum. We used
a “multi-regression stability” function analysis, which seeks
input parameters that result in consistent results across wave-
lengths, in order to reduce some of the noise in regression.
The parameter values are not expected to vary quickly across
wavelengths, and we exploited this assumption to obtain
more stable solutions. The algorithm evaluates the previous
regression values and compares them to the current results,
as the program iterates over wavelengths. We chose the index
of refraction as the stability threshold variable, since, while
variable, it still exhibited high correlation. For example, if the
difference between the previous wavelength fit parameter
and current fit parameter was greater than some threshold,
we changed the starting regression values for each parameter
to a value halfway between the previous and current values.
We set the maximum multi-regression iteration count to three.
Three iterations yielded good results, balancing convergence
and computation time. This resulted in smoother spectral
outputs, while avoiding observed local minima around the
global minimum.

The pattern seen over wavelength in the optimized parame-
ters in Fig. 12 is very similar for each of the three leaf types.
Note, that the sweetgum leaf was only fit to data from three
source zenith angles: 0◦, 15◦, and 30◦, while the maple and
oak leaves were fit to all four source angles. The sweetgum
parameters exhibited some stark contrasts to the other two
leaf types when fit to all four source angles. As mentioned
earlier, the sweetgum measurement with the 45◦ illumination
angle did not follow the pattern of becoming more diffuse
with larger illumination zenith angle, which we attributed to
between-leaf variation. Fitting the model with the 0◦, 15◦,
and 30◦ illumination angles, as seen in Fig. 11, resulted in
model NRMSE for the sweetgum leaf dropping slightly, but
more significant is the fact that the parameter values followed
the same trend spectrally, as seen for the maple and oak
leaves. We therefore only show the sweetgum fit here to

Fig. 12. (From left to right, top to bottom) Fit parameters for each leaf
type over the spectrum (350–2500 nm): the diffuse component, kl; index of
refraction, n; roughness, α; ratio of top versus bottom dual microfacet model,
α2; and optical density, β. The sweetgum parameters are from the optimization
using only 0◦ , 15◦, and 30◦ illumination angles, while oak and maple are from
the fit to all four illumination angles.

Fig. 13. Comparison of (Top row) measured BTDF values and (Bottom row)
modeled BTDF values for the oak leaf. (From left to right) Comparison is
for zenith illumination angles of 0◦, 30◦ , and 45◦. The white X denotes the
illumination angle position.

the three illumination angles: 0◦, 15◦, and 30◦, while all the
measurements and fits are available in the published data for
completeness.

As expected, the diffuse component seen in Fig. 12 is
patterned after a typical vegetation spectrum. Leaf thickness
and surface properties likely dictated the diffuse magnitudes,
with the maple leaf being the thinnest and clearly exhibiting
the strongest values. However, the sweetgum leaf clearly has
the smallest diffuse component, which is most notable in the
SWIR, possibly due to differences in leaf chemical content
and leaf anatomy. The index of refraction overall is similar in
scale for the three leaves, correlating slightly with absorption
spectra in the chlorophyll absorption regions, increasing in
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Fig. 14. BTDF model for the oak leaf at 550 nm in 10◦ steps from (Top left)
0◦ to (Bottom right) 80◦ . The model results in an expected BTDF pattern,
showing the strongest specular component at nadir illumination, and becoming
more diffuse with increasing illumination zenith angle.

the near infrared response (NIR), with a gradual drop in the
SWIR, but exhibiting a spike in the 1800–2000-nm water
absorption spectral regions. Values for the refractive index
are greater than expected [9]. The linear combination used
for the specular component and the high correlation between
variables in the model are possible causes for the higher than
anticipated values. The roughness parameter, α, is higher in
the visible, decreases before the NIR, and increases toward the
NIR and SWIR domains. The sweetgum leaf has the strongest
increase in the NIR and SWIR overall, having the largest value
of the three leaves. The α2 parameter exhibits a similar trend
for each leaf, being slightly higher in the visible, and lower
in the NIR and SWIR spectral regions. A larger α2 implies
that the top-side rough bottom-side smooth was given more
weight. Top-side rough (i.e., a larger α2) according to the
model exhibits less diffraction. The β parameters for each leaf
exhibit an optical density spike between 550 and 700 nm, with
the sweetgum having the largest peak, suggesting that it has
the highest absorption. It is challenging to link the five para-
meters in the model to actual leaf physiology, although select
relationships may exist, the variables are highly correlated.
We therefore can say that the roughness and index of refraction
parameters are related to, but not absolute measurements of the
actual leaf physical characteristics. Future work should study
the link between microfacet models and actual leaf physiology.

Table IV gives the highest correlations for the oak leaf and
their correlation coefficients at a few selected wavelengths,
as computed by LMFIT. Each leaf fit exhibited similar cor-
relations. The diffuse term and the index of refraction show
the largest correlation, which is due to the behavior of the
index of refraction: when increased, the specular peak moves
toward nadir, broadens, and decreases, thus resembling the
bias diffuse term. β is the attenuation term, and its correlation
with the index of refraction arises from the reduction in
the specular peak when the index of refraction increases.
When α increases, the specular peak moves toward nadir and

TABLE IV

CORRELATION COEFFICIENTS FOR HIGHEST CORRELATED VARIABLES
FOR THE OAK LEAF

Fig. 15. (From left to right, top to bottom) Specular fraction plots over
the spectrum (350–2500 nm) of maple, sweetgum, and oak leaves. The plots
include the specular fraction at illumination angles of 0◦, 20◦ , 40◦ , and 60◦.
Note that as the illumination zenith angles increase, the specular fraction
decreases.

decreases, but without significantly changing shape. The α
and β correlation stems from the fact that both parameters
influence the magnitude of the specular peak.

A visual, qualitative assessment shows a good fit between
polar plots of measurements and the model BTDF. An example
of the oak leaf measurements and model fits at 550 nm
appears in Fig. 13. Fig. 14 displays the extension of the model
to nonmeasured illumination zenith angles, which follows
expectations of becoming more diffuse at larger angles.

Our modeled results included a specular fraction analysis,
which first computes DHTspec according to (4) for only the
specular modeled component, τspec(ωo, ωi ) and then calculates
a specular fraction (fractional contribution of specular trans-
mittance to total DHT) via

Specular Fraction = DHTspec

DHTspec + kl
(32)

where kl is the diffuse term of the model. In Fig. 15, we plot
the specular fraction for the three leaf species and four
illumination angles.

Correlations exist between model parameters, making the
specular fraction presented relative. Although a relative
value, it is still valuable in identifying wavelengths where
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non-Lambertian scattering dominates. The plots show a strong
peak in one of the chlorophyll absorption bands (600–700 nm),
where the specular component dominates with minimal dif-
fuse component. There are also smaller peaks in the water
absorption bands between 1400–1500 and 1900–2000 nm. The
sweetgum leaf has the strongest specular fraction components
overall, with the oak and maple being very similar. This was
attributed to the sweetgum leaf’s characteristics of being thin
and glossy, causing the least diffuse transmission scattering,
when compared with the rougher maple leaf, and the thicker
oak leaf.

VI. CONCLUSION

This study described the leaf directional transmittance scat-
tering measurements and modeling for Norway maple (Acer
platanoides), American sweetgum (Liquidambar styraciflua),
and northern red oak (Quercus rubra), collected via the GRIT-
T goniometer [24]–[28]. In general, the sweetgum and maple
leaf exhibited strong directional transmission components,
the maple presented the greatest transmittance, and the oak
leaf transmittance was the most diffuse. These results can
be attributed to the leaf appearances of the sweetgum being
thin and glossy, the maple very thin and matte, and the oak
having the thickest cuticle layer. We developed a two-layered
microfacet model, following the technique presented by Dai
et al. [39], while incorporating the Smith masking-shadowing
function [35], the GGX microfacet distribution [38], and an
optical density with Beer’s law [40]. Nonlinear least squares
minimization of the model to the measurements resulted in
an overall 6.8% mean NRMSE averaged over the wavelengths
450–2300 nm. The model fit parameters represent the physical
leaf characteristics of the index of refraction, roughness, top
versus bottom boundary roughness ratio, optical density, and
a Lambertian term. The model enables the capability to
produce BTDF values for all possible illumination and view
directions necessary for the integration into radiative transfer
simulations. High correlations between the model parameters,
and physically unrealistic values, made it difficult to directly
relate the parameters to leaf structure. The model depended
on the summation of separately modeled diffuse and specular
components of the leaf BTDF. We analyzed the specular
fraction, defined as the ratio between the non-Lambertian
component of the BTDF and the total transmission. For a
nadir illumination angle in the chlorophyll absorption region
at 670 nm, the directional component is strongest, being
80% or more of the total transmittance. The sweetgum leaf
showed the strongest specular fraction component, while the
oak and maple were very similar. Future work should focus
on determining the contribution of the leaf directional trans-
mittance component to the signal observed by canopy-level
remote-sensing systems. We also believe leaf BTDF will have
significant impact on remote-sensing modalities such as PAR
measurements looking up into the canopy. Future efforts also
could assess the connection between the model inputs and
leaf physiology. Another important advancement in leaf-level
measurements would be to create larger data sets for the
same leaf type and measurement method to use in a statistical
analysis in order to more accurately determine error due to leaf

variability. In conclusion, this study contributes to the scientific
advancement of spectral measurements based on the following:
1) novel high spectral resolution broad leaf BCTF mea-
surements, while having 2) identified distinguishing features
between three leaf species; 3) developed a highly accurate leaf
BTDF model, which incorporates methods from the computer
graphics community; 4) extracted model parameters related to
leaf physiology; and 5) identified wavelengths in which single
scattering predominates over Lambertian transmission. This
work provides insights into light vegetation interactions at the
leaf-level, enables future advances in remote-sensing radiative
transfer simulations and allows for further development of
canopy-level BSDF models.
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