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Abstract. Electronic image noise is often categorized as an artifact of image capture which typically 
requires correction. There are several sources of electronic image noise that contribute to the overall 
total noise in an image. Some of the noise from specific sources, known as systematic noise, can be 
corrected for in-camera, but noise due to certain sources, like photon noise, persists after capture 
and increases with exposure. We study this relationship between exposure and noise and discover 
that this relationship reveals information about the linearity, or non-linearity of the image encoding. 
Non-linear encoding of images through an Opto-Electronic Transfer Function (OETF) is a typical 
image processing step that allows for perceptually efficient use of encoding bit depth, and the 
accurate measurement or estimation of the OETF becomes necessary for proper processing of 
images through motion picture post-production workflows like the Academy Color Encoding 
Specification (ACES), helping minimize non-creative manual adjustments, or when combining natural 
images with radiometrically linear Computer Generated Imagery (CGI). Although there are well 
known standard OETFs implemented in typical video camera workflows, motion picture camera 
workflows have introduced new standard OETFs as well as custom and/or proprietary OETFs. 
Existing methods to measure or estimate this function rely on the use of test charts, restrictive 
exposure and/or lighting conditions, or assume a simplistic model of the function's shape. All these 
methods become problematic and tough to fit into motion picture production and post-production 
workflows where the use of test charts and varying camera or scene setups becomes impractical. 
We propose a method based on the relationship between exposure and noise mentioned above and 
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demonstrate how this relationship reveals information that can be used in an inference framework to 
estimate the OETF, and in turn, linearize images for accurate processing, when necessary, without 
the need for charts or specific image capture conditions. In addition, we present the limitations of our 
method, for example, where extensive and/or adaptive noise correction can prevent our method from 
an accurate estimation of the OETF. 

Keywords. Radiometric Calibration, Opto-Electronic Transfer Function (OETF), Camera Response 
Function (CRF)
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Introduction 

Digital processes today generate large amounts of data. These processes exist in many 
applications and in most cases, the generated data exists by itself without any information or 
details about the process that created it. It is of interest to use computers to analyze the data, 
learn information about the process, and be able to predict future data from an estimation of the 
process that generated that data. 

One of such processes is the capture of images by an electronic camera. Different cameras 
have different ways of encoding the light being captured from a scene. This encoding converts 
the light falling onto the imaging sensor into digital pixel code values that are then manipulated 
in post-production. One of the most important steps in this encoding is the Opto-Electronic 
Transfer Function (OETF) which allows the camera to have a more efficient encoding and to 
encode the light from the scene in a way that mimics the human visual system. Another 
important typical step following the implementation of the OETF is a color encoding transform 
that ensures subsequent appropriate display color reproduction. Although the main objective of 
the OETF is similar for all cameras, different camera manufacturers implement different types of 
functions due to different existing standards, advancements in camera technology, proprietary 
advantages, and image sensor characteristics to name a few reasons. 

To reduce time-consuming technical adjustments in post-production, it is desired to implement 
methods that estimate camera specific characteristics that created the images, like the OETF, 
without the need for analysis procedures that are not viable or practical in production or post-
production environments. Typical television or motion picture productions involve different 
image manipulation workflows that are very challenging to integrate. Many of these productions 
can use various capture mediums in the production. Add to this the fact that during post-
production, images from different sources can arrive at a facility in several different formats, 
color encodings and sometimes without helpful metadata. An example encoding system to solve 
some of these issues is the Academy Color Encoding System (ACES) and its Input Device 
Transform (IDT) which aims at characterizing every possible input so it can be integrated into 
the ACES workflow. The OETF is a key camera characteristic that needs to be known for the 
accurate calculation and/or implementation of an IDT, since it relates camera code values to 
linear scene radiometry.  

Previous Work 

Aside from measuring the OETF through direct photography of a variable reflectance or 
transmittance test chart, some of the most popular methods for estimating it involve taking 
multiple registered images of a static scene while varying the camera exposure1,2. Work has 
also been done by Grossberg and Nayar3 to relax this dependency on multiple spatially 
registered images by using histograms of images at different exposures. Manders, C. et al.4 
estimate the response by capturing registered images of a static scene illuminated by different 
combinations of light sources and locking the exposure instead of varying it. Similar work was 
presented by Kim et al.5 where the estimation is done based on a video sequence with varying 
exposure. All these methods require significant effort to obtain a series of registered, static 
scene or exposure dependent images. Other approaches, like Farid6, assume that the response 
function has the form of a gamma curve to estimate it from one single image by exploiting the 
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fact that the non-linearity introduced by the gamma correction also introduces higher-order 
correlations in the frequency domain that can be detected with tools from polyspectral analysis. 
However, many cameras in use today in the motion picture industry have OETFs that differ 
significantly from a gamma curve, especially higher end motion picture cameras where their 
design deviates from the typical video imaging paradigm. Lin et al.7 estimate the response by 
looking at the edge color distributions in a single image. 

Other work has focused on using multiple images, especially photo collections. Diaz and Sturm8 
use a set of images from an internet collection to recover the camera's geometric calibration and 
a 3D scene model, which in turn are used as input to determine the camera radiometric 
response function. The requirement to obtain the scene 3D model would be an undesired 
workflow step for motion picture post-production workflows focused on image integration and 
color correction. Shafique et al.9 introduce a method that uses differently illuminated images and 
estimates the response function by assuming that the properties of materials in a scene should 
remain constant and use cross-ratios of image values in the different color channels to compute 
the response function. They also model the response function as a gamma curve. This again 
excludes the modeling of cameras that have OETFs that differ from a gamma curve and their 
algorithm was only verified by synthetic experiments. Kuthirummal et al.10 found priors for 
statistics in large photo collections and use them to estimate the response function of generic 
camera models if all instances of a camera model have the same properties and that many 
images are available for that specific camera. A major disadvantage of their method is that it 
doesn't allow modeling of cameras with interchangeable lenses. This is also an impractical 
approach for the motion picture industry. Lastly, our previous work11, expands on the work of Lin 
et al. by extending their framework to the use of multiple images and estimating the posterior 
probability distribution, and serves as the basis for the methodology presented in this paper.   

Many of the existing methods described above suffer from the following general practical 
limitations in their application to the motion picture industry. They are restrictive in the position 
or movement of the capture device, they are restrictive in the exposure required for the camera 
sensor, and they wrongly assume a simplistic mathematical formulation of the OETF, or they 
require co-capture of images plus additional scene information. Our proposed approach 
explained in the following sections again looks avoid these limitations and provide a solution 
based on typical motion picture images.  

Radiometric Calibration Background 

The radiometric camera response function f relates captured scene radiance I, or proportional 
image irradiance, to its measured intensity M in the image, represented by the pixel code value: 

 

        (1) 

 

Typically, radiometric calibration methods solve for the inverse response function , which 
is invertible since the sensor output increases monotonically with respect to I. Popular previous 
works relying on multiple exposures compute the inverse response function based on the 
relationship: 
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          (2) 

 

where mA and mB represent image intensities in images A and B respectively for corresponding 
points and k denotes the exposure ratio between the two images. Requirements like precise 
registration of images or known exposure ratios have been worked around with the use of 
histogram equalization and the use of iterative methods, referenced in the previous section, to 
solve for k and g. 

One important obstacle in computing the camera radiometric response function from Equation 2 
is the exponential ambiguity. From Equation 2, if g and k are solutions for a specific image set, 
then gu and ku could also be solutions. To deal with this ambiguity, these prior methods require 
a good initial estimate of the exposure ratio if unknown, and assumptions on the structure of the 
radiometric function model as presented by Grossberg and Nayar12. Their results present a 

relationship between image intensity  and image irradiance I that can be expressed as 
a linear combination of an average camera response function h0 and principal components hn: 

 

 

      (3) 

 

This principal component analysis (PCA) approach produces the mathematical model of the 
OETF. 

Bayesian Inference Framework 

Probability based estimation methods have been used for many years and in many 
applications14. Two popular solution approaches for these estimation methods are maximum 
likelihood (ML) and maximum a posteriori (MAP)15. In the case of ML, the result produces the 
choice most likely to have generated the available data. MAP produces the choice that is most 
likely, given the available data. An important difference is that MAP estimation applies Bayes' 
Rule, shown in equation 4, so that the estimate can consider prior parameter knowledge in the 
form of a prior probability distribution, p(g), while evaluating the likelihood of the data, p(Ω |g), 
generated by those parameters. MAP can be considered an improvement over ML, but both ML 
and MAP give only single point best estimates and not a distribution of the parameters in 
question, although a benefit is that these methods typically compute this single best estimate in 
a fast and efficient manner. 

 

 

                                  (4) 
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Prior Probability Distribution 

The prior model was created from the Database of Response Functions (DoRF) compiled by 
Grossberg and Nayar12. This database contains 201 inverse response functions from a variety 
of digital cameras and films up to the year 2003. The prior probability distribution based on this 
database, p(g), describes prior knowledge about the mathematical description and space of 
OETFs and is modeled as a Gaussian Mixture Model (GMM), with means and covariances μi, Σi 
for each mixture component i and mixture proportion α i. In our implementation the prior was 
precomputed using the Expectation Maximization (EM) algorithm.  

 

       (5) 

 

Bayesian MAP Solution 

After modeling the prior and the likelihood functions, the problem can be formulated with a MAP 
solution approach as described in equations 7 and 8. The optimal response function for a data 
set Ω, is then described as:  

 

   (7) 

 

Or taking the log of equation 7, g can also be written as:  

 

      (8) 

 

This again represents a single point best estimate of the inverse OETF, g. 

Posterior Probability Distribution 

As mentioned in the previous section, a benefit of ML and MAP is that these methods compute 
a single best estimate that can be easily and efficiently calculated, but this comes at the cost of 
throwing away information included in the posterior probability distribution, p(g| Ω) in equation 4, 
due to the cost of computing the integral in the denominator over a high dimensional space. To 
do this, we realize that the integral in the denominator in equation 4 is an expected value 
calculation that can be approximated, allowing us to estimate the posterior distribution of g 
rather than just a single best estimate. This expectation is shown in equation 9 for the general 
continuous case. 

 

      (9) 
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Here z is the random variable, and p(z) is the probability distribution over possible values of z. In 
our case we are interested in calculating the expected value of f(z) =p(Ω |g), which is the 
probability of the data given g, the likelihood. This expectation is taken over the whole 
distribution of possible values of g, p(g), the prior. 

Markov Chain Monte Carlo (MCMC) 

The problem in calculating the expected value in equation 9 arises from the fact that computing 
the integral in the denominator of equation 4 is in many cases an intractable problem13. 
Conceptually, this integral sums up p(Ω |g) p(g) over all values of g , in a highly dimensional 
space. Since we are interested in approximating this integral because of the high 
dimensionality, another way to think about the calculation is to sample N points z (1), z (2), z (3) 
... z (N) from the distribution p(Ω |g) at random with respect to the prior probability density 
function p(g), giving us the expected value in the following form. 

 

         (10) 

 

 

By thinking of the problem in this way, we can implement a Markov chain Monte Carlo (MCMC) 
sampling algorithm, like the Metropolis-Hastings algorithm13, to approximate the posterior 
probability distribution for g given a set of image pixel data Ω, and obtain an expected value 
from that approximation, as equation 10 shows. 

Image Noise Background 

The total noise in the image data captured by an imaging sensor is a combination of several 
independent sources of noise. These include photon noise, read noise, which includes a fixed 
pattern noise component, thermal noise, pixel response non-uniformity noise and the 
quantization error. Equation 11 shows how different independent noise sources, N1, N2, N3...Nn 
are added in quadrature to contribute to the total noise Nt.  

 

(11) 

 

Photon noise is the noise associated with the fluctuations around the average flux of photons arriving at 
an imaging sensor. These fluctuations are governed by Poisson statistics, and they are equal to the 
square root of the average flux, or number of photons, counted by the imaging sensor. Equation 12 
shows this relationship, where NPh represents the photon noise and P represents the photon count. 

 

(12) 
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Read noise, NR, is associated with the fluctuations introduced by the electronic components 
present in the readout, gain and digitization circuitry of the sensor at each pixel. The digitized 
signal is ideally directly proportional to the photon count that arrived at each pixel. But in real 
camera systems, the read noise introduces a deviation in the raw measured code value. As an 

example, the read noise can be isolated and measured by capturing a black frame. This implies 
taking a frame, or a few frames, with a lens cap on, to avoid light hitting the sensor, at the 
highest shutter speed, or shortest integration time, possible. Once this black frame is captured, 
the read noise can be calculated as the standard deviation of that frame, since all variation 

is solely due to the electronics and not to any arriving photons. A component of the read noise is 
the fixed pattern noise, and it can be isolated by taking the average of J black frames, typically 
ten or more. This averaging has the effect of removing the variable component of the noise, 
reducing it by a factor of sqrt(J) relative to the fixed pattern component, and leave only a fixed 
pattern noise template, that can then be subtracted by the camera processing. 

 

A third noise component is thermal noise. Thermal noise is due to the thermal agitation of 
electrons in a sensor pixel, and they are indistinguishable from electrons generated by an 
exposure. The thermal noise tends to rise with exposure time, but this is not a concern for 
motion imaging applications as the exposure time is set consistent each time and it is restricted 
by the chosen frame rate of the motion imaging camera. 

 

Pixel response non-uniformity (PRNU) is related to the difference from pixel to pixel in the 
efficiency to capture and count arriving photons. PRNU grows proportionally with the exposure 
level, and it is the most dominant noise component at high exposure levels if not accounted for 
in the camera processing. The relationship between PRNU and raw code values is given by 
equation 13, where NPRNU represents the PRNU noise, v represents the variation in the 
response of each pixel and SAVG represents the average raw code value. 

 

       (13) 

 

The last noise component is the quantization error. This noise is due to the rounding off in the 
conversion from an analog voltage signal into a digitized raw code value. The contribution of this 
error to the noise is considered negligible in modern electronic motion imaging cameras. 

 

In modern camera systems, some of these contributors to noise will be minimized by in-camera 
processing. As described above, the fixed component of the read noise can be eliminated by 
averaging several black frames. The PRNU can also be eliminated by a process called flat field 
correction since it is a fixed property of the imaging sensor that does not change from image to 
image. The process involves again taking J number of images of an evenly illuminated 
featureless surface. Since PRNU is most dominant at higher exposures, and the variable photon 
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noise will also be an important contributor at those exposure levels, taking the average of J flat 
field images will reduce the variable photon noise by a factor of sqrt(J) relative to the PRNU. 
Now, PRNU is a variation on each pixel’s response to light. The average flat field image 
represents a map of that variation and can then be used to divide the captured image pixel 

code values by the flat field image pixel code values, removing the variation in pixel-to-pixel 
response. This will also have the effect of dividing the pixel code values by the average 
illumination level of the flat field image LAVG, so it will need to be restored in the correction. 
Equation 14 shows how both the fixed pattern correction and PRNU correction are implemented 
where IC is the corrected image, IU is the uncorrected image, FPT is the fixed pattern noise template and 
PRNUT is the flat field PRNU template. Applying the correction in this way also takes care of removing 
any camera specific code value offset applied to images, as the fixed pattern template would include the 
offset. 

 

 

(14) 

 

Although these noise contributions from fixed pattern noise and PRNU can be minimized or 
eliminated in modern camera systems, contributions from the variable component of the read 
noise and from photon noise are going to be present in every image. This allows for the 
introduction of a noise image signature that can be used in our Bayesian framework to estimate 
the inverse OETF. 

Noise Image Signatures 

As shown in the previous section, many sources of noise combine when capturing an electronic 
image, and some of these sources can be eliminated or discounted. The two most important 
sources of noise considered in typical exposures are read noise, NR, and photon noise, NPh, and 
together they determine the image quality and signal to noise ratio at a given exposure. The 

two can be combined in quadrature to determine the total noise, NT, as presented in equation 
15. 

 

 

(15) 

 

Photon noise is dictated by Poisson statistics as shown in equation 12, where the photon noise 
is the square root of the average photon count. Image data is accessible in the form of raw code 
values instead of photon counts and there exists a proportionality constant that relates this 
photon count and the raw code value. This is known as the gain, and it is represented with the 
variable gc. This allows equation 12 to be rewritten in terms of code values (CV). With gc 

photons/CV, the noise and the photon count are represented in code values as NPhCV = NPh/gc and 
SCV = P/gc, and equation 12 can be rewritten in the following form: 
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(16) 

 

 

In addition, gc is inversely proportional to the camera ISO setting, gc = ISON/ISO, where ISO 
represents the camera ISO setting and ISON is a constant that represents the native ISO of the 
camera, which is reported by the camera manufacturer. 

 

This results in the following relationship between the photon noise code value, the signal code value, 
and the gain. 

 

 

   (17) 

 

 

Now equation 15 can be expressed in the following form where the total noise, read noise and 
photon noise are obtained by measuring the noise and signal in pixel code values. This allows 
the measurement of the noise at a variety of exposure levels, plotting the square of the noise 
versus the average code value and fitting it to a straight line, where the inverse of the slope is 
the gain controlled by the camera ISO setting, and the y-axis intercept is the read noise 
squared. This is illustrated in figure 1 for a linear image with no OETF applied. 

 

 

(18) 

 

 

Figure 1. Linear relationship between the square of the total noise versus the measured 

pixel code value for channels R, G, and B. 
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Figure 2 shows the effect of applying an OETF to the image. This non-linearity of the total noise 
squared vs. average code values is the noise image signature used to estimate the OETF, and 
processing the image through the inverse OETF restores the linear relationship. 

 

 

 

Figure 2. Non-linear relationship between the square of the total noise and the 

measured pixel code value for channels R, G, and B. This is introduced by applying an OETF. 

 

Pearson Correlation Coefficient 

Examining equation 18, it is necessary to define a metric that indicates the level of linearity 
between the squared noise measurements versus code values. The Pearson correlation 
coefficient can be used to measure this linearity between the squared noise variable and the 

code value variable. In addition, the distance metric known as Pearson distance is also used. The 
Pearson distance will have minimum value of 0, for a total positive correlation and a maximum value of 
2 for a total negative correlation. This distance can then be incorporated into the likelihood probability 
exponential distribution as described earlier. Equations 19 and 20 show the Pearson correlation 
coefficient for random variables X and Y, and corresponding mean and standard deviations,  and , and 
the Pearson distance calculation. 

 

 

   (19) 

 

 

 

       (20) 
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Figure 3 shows sample Pearson correlation coefficients for various examples of a scatter diagram 
between random variables X and Y. 

 

Figure 3. Sample Pearson correlation coefficient values for different random variable relationships. 

 

Image Noise Area Detection 

Figures 1 and 2 show the total squared noise versus code value relationship utilizing images of a color 
checker, or similar chart, to ensure smooth nontextured image surfaces appropriate for noise 
measurements. This is a practical process to follow in a laboratory environment to validate the 
methodology, but very impractical for typical production workflows. This research aims to compute this 
for any non-textured image areas where the measurement can be done reliably. The task of detecting 
these areas in typical images is carried out in two general steps. First, an edge detection algorithm is 
used. This step ensures that true edges and textured image areas are detected. Second, the edge map 
created in the edge detection stage is used to exclude those areas from where noise measurements can 
be done. Various patch regions sizes were tested and negligible OETF estimation result differences were 
found for patch sizes 25x25 or larger, although the algorithm performance was impacted by patch sizes 
above 50x50. The patch size was empirically selected to 30x30 pixels for most experiments. The total 
number of patches was also empirically selected to be between 500-1000 patches per image. Figure 4 
shows an example edge map and subsequent patches selected for noise analysis. Figures 5 and 6 show 
the non-linear image noise signatures for the red, green, and blue channels, for an ARRI camera, and the 
subsequent noise signatures after OETF linearization. 
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Figure 4. Example edge detected image and accompanying noise patch detection avoiding textured 
image areas identified by the edge detection algorithm. 

 

 

Figure 5. Non-linear relationship between total squared noise and the measured 

pixel value for R, G, and B channels, for an ARRI camera image. 

 

 

Figure 6. Non-linear relationship correction through inverse OETF, between 

Total squared noise and the measured pixel value for R, G, and B channels, for 

ARRI camera image. 
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OETF Estimation Results 

Our Bayesian inference method was implemented to estimate the posterior distribution of the OETF. 
Figure 7 shows the OETF (inverse of g) expected value, compared with the actual measured OETF for an 
example camera. RMS errors obtained were .017, .020, .020 for the red, green, and blue channels 
respectively, showing comparable and modest improvement over our previous approach11.  

 

 

Figure 7. OETF estimation comparison with posterior probability distribution sampling 

and OETF expected value calculation, including noise image features. 

 

Methodology Limitations 

When considering our methodology, aggressive spatial image processing can affect the distance 
calculation in equation 20. As well, aggressive noise reduction can also adversely impact the ability to 
measure the photon/read noise at different non-textured areas of the image and consequently affect 
the accurate estimation of the OETF. In addition, very low dynamic range images, e.g., very dark, very 
bright images, or extremely low contrast images, can present a challenge in obtaining enough data for 
the calculation of the Pearson coefficient. The linearity of the data presented on figure 1 is best 
represented and visualized with code values across a large dynamic range of the camera system, versus 
a reduced number of measurements grouped together in any single area of the camera dynamic range, 
which can affect the accurate calculation of the Pearson correlation coefficient and Pearson distance. 
Lastly, highly textured image content can present a challenge in the identification of enough 
nontextured image areas to compute the total noise at different parts of the dynamic range of the 
camera. 
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Conclusions 

The methodology described in this work is a viable solution for estimating an electronic camera OETF 
from captured digital images. This again is an important computation when the OETF is not known from 
metadata or from a direct measurement. In many cases, only captured digital images, and not the 
camera or accompanying metadata, are available when incorporating said images into a motion picture 
post-production workflow. An OETF will typically represent a non-linear relationship between the scene 
radiometry and the measured pixel code value for benefits including encoding efficiency and perceptual 
accuracy. Understanding this non-linearity is also important to ensure the proper calculation or 
implementation of color space transformations like the ACES IDT. The calculation of the IDT assumes a 
linear relationship between the exposures captured by the camera system and the measured pixel code 
values, and any non-linearity still present in the image pixel code values at the time of calculating or 
implementing an IDT, can result in color errors that can prevent efficient post-production workflows. 
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