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Abstract: We analyze magnetometry using an optically levitated nanodiamond. We consider a
configuration where a magnetic field gradient couples the mechanical oscillation of the diamond
with its spin degree of freedom provided by a nitrogen vacancy center. First, we investigate the
measurement of the position spectrum of the mechanical oscillator. We find that conditions
of ultrahigh vacuum and feedback cooling allow a magnetic field gradient sensitivity of 1
μTm−1/

√
Hz. At high pressure and room temperature, this sensitivity degrades and can attain

a value of the order of 100 mTm−1/
√

Hz. Subsequently, we characterize the magnetic field
gradient sensitivity obtainable by maneuvering the spin degrees of freedom using Ramsey
interferometry. We find that this technique can offer photon-shot noise and spin-projection noise
limited magnetic field gradient sensitivity of 100 μTm−1/

√
Hz. We conclude that this hybrid

levitated nanomechanical magnetometer provides a favorable and versatile platform for sensing
applications.
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1. Introduction

Recent developments in cavity opto- and electro-mechanics have actively explored the cooling
and manipulation of mechanical motion of nano resonators [1–5]. The spectacular progress in
this research has been motivated by ideas for applications in ultrasensitive metrology [6] and for
testing macroscopic quantum mechanics [7]. However, experimental investigations in this field
suffer from heating and decoherence produced by mechanical clamping of the oscillator. An
effective remedy to this problem is to isolate the mechanical oscillator from its environment by
means of levitation using optical [8–10] or magnetic fields [11, 12], for example. In particular,
optically levitated nanoparticles have been investigated for cooling [13–15], preparation of
quantum superposition states [16, 17] and precision sensing applications [18, 19].

Interestingly, optical levitation of solid state quantum emitters possessing internal degrees
of freedom such as Nitrogen-vacancy (NV)-centers provides a promising platform for
optomechanical studies [20–22]. Such hybrid nano-mechanical systems are of significant
interest for generating macroscopic quantum superposition states [23–26] and testing quantum
gravity in vacuum [27]. The key ingredient in these proposals is the coupling between the
nanomechanical oscillator and spin degrees of freedom mediated by either a magnetic field
gradient (MFG) [28, 29] or a lattice strain field [30, 31]. Such couplings have been extensively
explored for mechanical cooling [32,33], mechanical squeezing [34] and spin squeezing [35,36].
Due to their easy controllability, fast manipulation, as well as unprecedented coherence time
under ambient conditions, NV centers are attractive quantum systems for applications in
quantum information processing and ultrasensitive magnetometry [37].

More recently, optomechanical system based on whispering gallery modes have been
used to realize magnetometers [38, 39] with magnetic field sensitivity 131 pT Hz−1/2 [40].
These magnetometers are miniaturized and offer large dynamic range, unlike superconducting
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quantum interference devices (SQUID) [41] and spin exchange relaxation free (SERF)
magnetometers [42] which however have better sensitivity. All these magnetometers
demonstrate sensitivity to a magnetic field. However, the investigation of MFG sensitivity
is equally important due to its potential applications in the generation of macroscopic
superposition states [23–26], testing of quantum gravity [27], magnetic resonance imaging [43],
and cell therapy [44]. In recent years, non-levitated cantilever type of systems have been used
for the measurement of MFG (∼ 105 Tm−1 in [29, 45]). However, the analysis for the measure-
ment of MFG sensitivity in levitated systems still needs to be explored. In this paper, we propose
the exploration of MFG sensitivity based on an NV-center levitated in an optical dipole trap. We
consider two ways in which the measurement of a MFG sensitivity can be carried out - (i) by
manipulating the mechanical degrees of freedom, and taking a trace over the spin degrees of
freedom, and (ii) by manipulating the spin degrees of freedom and tracing over the mechanical
degrees of freedom. As recently predicted, maneuvering of the mechanical degrees of freedom
under ultrahigh vacuum is expected to lead to the preparation of the ground state [14]. Working
under these conditions, we obtain a MFG sensitivity of the order of 1 μTm−1/

√
Hz. However,

the MFG sensitivity of the proposed magnetometer degrades under less stringent conditions.
Specifically, we identify a suitable parameter regime where MFG sensitivity can attain a value
of 100 mTm−1/

√
Hz at room temperature and atmospheric pressure.

On the other hand, in order to manipulate the spin of the NV-center we consider a Ramsey
pulse sequence [37]. After initial preparation of the spin state, the spin-mechanical interaction
is switched on during the free evolution time, which leads the mechanical states to acquire
different phases conditioned on the spin states [24, 25]. Finally, after a suitably chosen
interaction time, the acquired phase can be read out optically. Following this procedure, we
obtain the photon-shot noise and spin-projection noise limited MFG sensitivity of the order
of 100 μTm−1/

√
Hz. For these conditions, we find that the proposed magnetometer does not

suffer appreciably from decoherence under realistic experimental conditions, unlike clamped
oscillators [38–40]. Further, cavity optomechanical magnetometers utilize a magnetostrictive
material whose geometry is difficult to control causing an undesirably weak coupling between
mechanical motion and applied force [38]. Contrary to this, the proposed magnetometer
employs a nanodiamond with a single NV-center which are attractive systems for magnetometry
[46]. Thus, the ability to sensitively detect magnetic field gradients, portability, small size and
suitability for working under both feedback-cooled as well as room temperature conditions,
makes the proposed magnetometer appropriate for sensitive applications [47].

2. Model

Recently, nanodiamonds containing single nitrogen-vacancy (NV) center have been optically
levitated in vacuum [20]. We consider such a single NV-center diamond of mass m which
is trapped in vacuum by a focused Gaussian beam resulting in mechanical oscillations at
a frequency ωm , as shown in Fig. 1. For small amplitudes, as considered in this paper,
the oscillations along the three spatial directions are uncoupled and may be considered
independently. We will consider nanodiamond oscillations in the optical trap along the z-axis.
The position of the levitated particle is continuously monitored by means of interferometric
techniques. The detected position information is fed back to the trapping beam in order
to modulate its optical intensity [20]. Such feedback causes additional damping of the
nanodiamond and gives rise to cooling, in addition to also causing some backaction heating.
Under optimal conditions, the ground state of the oscillator can be prepared [14]. Neglecting the
spin degree of freedom for the moment, the quantum dynamics of the nanodiamond oscillation
are modeled by the master equation [14]
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Fig. 1. Schematic of the optically levitated nanodiamond oscillating in dipole trap along
z-direction. A green laser of wavelength 532 nm excites the nanodiamond. A MFG
along z-direction is applied to engineer spin-mechanical coupling. Microwaves are used
to manipulate the ground spin state of nanodiamond.

ρ̇ =
1
i�

[
Hm , ρ

]
−

(
At + Ap + Dp

2

)

D
[
Qz

]
ρ (t) −

Dq

2
D

[
Pz

]
ρ (t)

− i
ηf

4m
[
Qz , {Pz , ρ}

]
+ F

[
ρ (t)

]
, (1)

where, the first term represents the unitary evolution of the motion of center-of-mass mode
am described by the Hamiltonian Hm = �ωma†

mam . The second (third) term describes the
momentum (position) diffusion of the nanodiamond due to collisions with background gas,
with momentum (position) diffusion coefficient Dp = 2ηf kBT z2

0/�
2(Dq = ηf �

2/24kBTm2z2
0 ),

where, T is the gas temperature, kB is Boltzmann’s constant and z0 =
√
�/2mωm is the zero

point fluctuation of the mechanical oscillator. Also, At (Ap) represents the heating rate due to
trap (probe) beam photon scattering, respectively. The fourth term accounts for gas damping
with coefficient of friction ηf = 6πμR, where μ is the dynamic viscosity of the surrounding gas
and R is the radius of nanodiamond. The superoperator in the fifth term corresponds to feedback
and contains both the respective feedback damping and backaction and is given by F

[
ρ (t)

]
=

−i χ2ΦG
[
Q3

z , {Pz , ρ}
]
− χ2ΦG2D

[
Q3

z

]
ρ. Here, Φ is the average detected flux of photons, G

is the feedback gain and χ is the scaled optomechanical coupling. The respective dimensionless
position and momentum operators are defined as Qz = a†

m + am and Pz = i(a†
m − am ). The

Lindblad superoperator in Eq. (1) is written asD
[
Qz

]
ρ = Q†

zQz ρ+ ρQ
†
zQz −2Qz ρQ

†
z and the

creation (annihilation) operator of the mechanical oscillator along z-axis is a†
m (am ). In earlier

works, this master equation was shown to analytically model the phonon dynamics [14] and
oscillator phase space distributions [48] observed experimentally.

Besides the mechanical motion, levitated optomechanics of the nanodiamond provides a
versatile platform for coherent control over spin states, as well [22]. We now consider the
addition of the spin degree of freedom to the dynamics. The NV defect is typically available
in two different forms, namely the neutral state NV0 and negatively charged state NV− [37].
These two forms have different spin and optical properties. However, the negatively charged
state of the defect is of particular interest for magnetometry applications, due to the existence
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(a) (b)

Fig. 2. (a) Level diagram for excitation and read-out of NV-spins by optical means.
Inset shows the bare energy-level diagram for the triplet ground-state of NV-center in
nanodiamond. The microwave fields of Rabi frequencyΩ0 drives the transitions |0〉 → |+1〉
and |0〉 → | − 1〉 with detuning Δ. (b) The dressed-state description of NV-spin. Phonons
of energy ωm drives the transitions |c〉 → |b〉 and |b〉 → |a〉 with effective detunings
Δ1 = ωm − ωbc and Δ2 = ωm − ωab , respectively.

of its spin triplet ground state which can be initialized, coherently manipulated and read out by
optical means. We consider illumination by green laser of 532 nm wavelength driving the spin-
conserving transitions 3 A2 →3 E2 followed by spin-selective intersystem crossing towards an
intermediate spin singlet state 1 A1 [see Fig. 2(a)]. This leads to a high degree of spin polarization
in the ms = 0 state (here, ms denotes the spin projection along the intrinsic quantization axis),
which results in higher photoluminescence intensity from the 637 nm zero-phonon line, as
shown in Fig. 2(a).

The spin triplet electronic ground state 3A2 of the NV-center with ms = 0 and ms = ±1 is
shown in the inset of Fig. 2(a). The bare state Hamiltonian describing the NV spin is written as
HNV = −�Δ ( | + 1〉〈+1| + | − 1〉〈−1|), where Δ is the detuning. Now, once initially prepared in
the ms = 0 state by optical means, the NV center is subjected to two microwave fields which
drive the transitions |0〉 ↔ | + 1〉 and |0〉 ↔ | − 1〉 with both Rabi frequencies equal to Ω0.
The corresponding Hamiltonian in the rotating-wave frame of the microwave field is written
as Hdrive =

�Ω0
2 (|0〉〈+1| + |0〉〈−1| + h.c.). We now apply a MFG B0 =

∂Bz (z )
∂z along the

z-direction. This creates a magnetic field B = B0�z and generates the coupling between spin
and mechanical degrees of freedom of the oscillator, governed by the interaction Hamiltonian
Hint = �gSz

(
a†
m + am

)
, where, Sz = | + 1〉〈+1| − | − 1〉〈−1| is the spin operator aligned along

NV symmetry axis, g = gl μBB0z0
�

is coupling strength, gl ≈2 is the Landé factor and μB is the
Bohr magneton.

It is to be noted that besides the center of mass motion, the torsional vibrations of levitated
nanodiamonds have also been realized [49, 50]. Further, the quantum ground state cooling of
torsional mode [49, 51] and torsional matter-wave interferometry [52] is proposed as well. In
these works the torsional modes can be coupled to NV center by employing a homogeneous
magnetic field and this torsional-spin coupling is proportional to the coordinate of torsional
displacement. However, in the present system we work in a regime where homogeneous
magnetic field vanishes and only MFG is present, which implies to the lowest order spin-
torsional coupling vanishes. Nevertheless, MFG creates a magnetic field which is proportional
to the linear vibrational mechanical amplitude. Hence the torsional-spin coupling is proportional
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to the product of linear times torsional mechanical amplitude which comes out to be very small
in the context of present system. Typically, the particle is energetic enough to climb out of the
torsional well and rotate freely, the rotational frequency is about an order of magnitude higher
than the oscillation frequency and the spin-torsional interaction averages to zero [53].

Now, to accurately describe the spin-mechanical interaction, we consider the resonant
interaction of microwave fields with the NV center in the dressed state eigenbasis of HNV +

Hdrive [see Fig. 2(b)]. These dressed states with their corresponding eigenvalues can be written
as

|a〉 = sin(θ) |0〉 + cos(θ) |+〉; ωa =

(
−Δ +

√
Δ2 + 2Ω2

0

) /
2 ,

|b〉 = |−〉; ωb = −Δ ,

|c〉 = cos(θ) |0〉 − sin(θ) |+〉; ωc =

(
−Δ −

√
Δ2 + 2Ω2

0

) /
2 , (2)

where, |±〉 = ( |+1〉±|−1〉)√
2

and tan (2θ) = −
√

2Ω0
Δ

.

3. Manipulation of mechanical motion

In this section, to analyze the MFG sensitivity, we consider the manipulation of the mechanical
degrees of freedom and taking trace over the spin degree of freedom. The physical idea is
to investigate the effect of weak coupling of the mechanics to the spin degree of freedom
which is the one addressed by the MFG. Specifically, we will analyze the position spectrum
of the mechanical oscillator. As explained above, optical illumination leads to electric dipole
transitions between the ground and excited states, subsequently followed by fast dissipation.
This dissipation controls the populations and coherences for the NV dressed states. It is to be
kept in mind that such a quick dissipation mechanism is necessary for the generation of steady
state squeezing and dissipation-induced cooling leading to the preparation of ground state of
the mechanical oscillator. Taking this into account, we trace over the spin degrees of freedom
and include the contribution from various dissipative terms to obtain the following full master
equation for the mechanical oscillator [14, 34]

ρ̇ =
1
i�

[
Hm , ρ

]
−

(
At + Ap + Dp

2

)

D
[
Qz

]
ρ (t) −

Dq

2
D

[
Pz

]
ρ (t) − i

ηf

4m
[
Qz , {Pz , ρ}

]

+ F
[
ρ (t)

]
− A−

2
D [am] ρ − A+

2
D

[
a†
m

]
ρ − iδ

2

[
a†
mam , ρ

]
, (3)

where, A− = 2g2α1 (A+ = 2g2α2) and δ = 2g2α3 describe dissipation induced cooling
(heating) and mechanical frequency shift due to spin mechanical coupling. Here, α1 , α2 and α3

can be written as [34]

α1 = Re

[
sin2 (θ)
N

(p2ρcc + p3ρca ) +
cos2 (θ)
N

p1ρbb

]

,

α2 = Re

[
cos2 (θ)
N

(p1ρaa + p3ρac ) +
sin2 (θ)
N

p2ρbb

]

, (4)

α3 = Im

[
sin2 (θ) (p2 (ρcc − ρbb ) + p3ρca )

N
+

cos2 (θ) (p1 (ρaa − ρbb ) + p3ρac )
N

]

,

where, p1 = −iΔ1 +
Γ1
2

(
1 + sin2 θ

)
, p2 = iΔ2 +

Γ1
2

(
1 + cos2 θ

)
, p3 =

Γ1
4 sin (2θ),N = p1p2 − p2

3
and Γ1 ≈ Γ2 is the decay of states | + 1〉 and | − 1〉, respectively. The detailed derivation of
population and coherence terms in Eq. (4) is presented in [34].
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3.1. Position spectrum

Now to continuously monitor the position of nanodiamond, the master equation Eq. (3) can
be unraveled in terms of the following set of quantum Langevin equations for position and
momentum quadratures [14]

Q̇z =

(
ωm +

δ

2

)
Pz −

(
A− − A+

2

)

Qz , (5)

Ṗz = −
(
ωm +

δ

2

)
Qz −

[

Γ +

(
A− − A+

2

)]

Pz

+

√
2mΓ0kBTe f f ξT (t) +

√

18ηΦnG2Q4ξF (t) +
[√

2A+ + 〈N〉
(√

2A+ −
√

2A−
)]
ξS (t) ,

(6)

where, ξ (t) are white noise terms with zero mean and correlation E
[
ξ (t)ξ (t′)

]
= δ (t − t′),

and Te f f is the effective temperature of the total background due to the combination of gas
and optical scattering. The parameter Γ = Γ0 + δΓ, where Γ0 represents the gas damping and
δΓ ≈ 12χ2G

(
〈N〉 + 1

2

)
. Note that last stochastic term in Eq. (6) arises as a consequence of the

spin-mechanical coupling and depends on the mechanical state of the system. Using Eqs. (5,6),
the stochastic differential equation for position (qz = z0Qz ) can be written as

q̈z + [Γ +A− − A+] q̇z +

{(
ωm +

δ

2

)2

+

[

Γ +

(
A− − A+

2

)] (
A− − A+

2

)}

qz

=
(FT + FF + FS )

m
, (7)

where, FT , FF and Fs are independent stochastic forces due to thermal, feedback backaction
heating and spin interaction, respectively with zero mean and correlations 〈FT (t) FT (t′)〉 =
ST δ (t − t′), 〈FF (t) FF (t′)〉 = SF δ (t − t′) and 〈FS (t) FS (t′)〉 = SSδ (t − t′). Here,

ST =
(

1 +
δ

2ωm

)

2mΓ0kBTe f f , (8)

SF =
(

1 +
δ

2ωm

)

54m�ωm χ
2ΦG2

(
2〈N〉2 + 2〈N〉 + 1

)
, (9)

SS =
(

1 +
δ

2ωm

)

m�ωm

[√
A+ + 〈N〉

(√
A+ −

√
A−

)]
. (10)

The position spectrum of the mechanical oscillator can be obtained by taking the Fourier
Transform of Eq. (7) which gives

q̃z (ω) = χm (ω)
[
F̃T + F̃F + F̃S

]
, (11)

where, χm (ω) represents the optomechanical susceptibility of the oscillator and is given by

χm (ω) =
1

m

{ [(
ωm +

δ
2

)2
+

(A−−A+
2

) (
Γ + A−−A+

2

)
− ω2

]
− i (Γ +A− − A+)ω

} . (12)

The expectation value of q̃z is therefore 〈q̃z (ω)〉 = 0 and the positional power spectral density
(PSD) is written as

〈|δq̃z (ω) |2〉 = | χm (ω) |2
[
〈|F̃T |2〉 + 〈|F̃F |2〉 + 〈|F̃S |2〉

]
. (13)
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Thus, the position noise spectrum including the contribution from shot-noise is given by

〈|δq̃z (ω) |2〉 = | χm (ω) |2 [ST + SF + SS ] +
z2
0

χ2Φ
. (14)

The position noise spectrum in Eq. (14) depends upon the spin-mechanical coupling and hence
on the MFG. We explore this dependence of the noise spectrum to describe the sensitivity of
MFG. To do so, we work in a regime of low pressure where cooling from various dissipative
mechanisms dominates over heating. For instance, the optimal feedback cooling at pressure �
10−5 mbar assists to prepare the ground state of the mechanical oscillator with 〈N〉 < 1 [14].
For the spin part, we consider the cooling transition ( |c〉 → |b〉) to be resonant (Δ1 = 0) while
the heating transition (|a〉 → |c〉) is assumed to be far off-resonant (Δ2 = −Δ). In this situation,
A+ = 0, δ = 0 and A− simplifies to first order as [34] A− ≈ g2α, where

α =
4
Γ1

(1 + cos (2θ)) sin2 (2θ)

9 − cos2 (2θ)
. (15)

The cooling term as described above varies with microwave power. It is possible to cool the
mechanical oscillator with 〈N〉 < 1 by working in a suitable regime of microwave power. For
instance, at Ω0 = 0.8ωm dissipative cooling dominates over heating and the steady state mean
phonon number approximates to 0.3 [34].
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Fig. 3. (a) Position power spectral density for z-component of motion versus frequency.
The parameters chosen are ωm = 38kHz, R =50 nm, density=2200 kg/m3, Te f f = 4 K,
χ = 10−7, G = 1/18, Ω0 = 0.8ωm , Γ1 = 0.25ωm . (b) Position power spectral density
versus scaled spin-mechanical coupling at ω = ωm . The inset shows the position PSD
corresponding to red ellipse for smaller values of g/ωm .

Working under the conditions stated above, we plot the position noise spectrum from Eq.
(14) in Fig. 3. In the absence of spin-mechanical coupling (SS = 0), the noise spectrum is
dominated by the feedback cooling [14] term proportional to SF in Eq. (14). However, the
amplitude of the spectrum decreases at resonance as the spin-mechanical coupling is introduced
[see Fig. 3(a)]. Our analysis indicates that the noise spectrum in Fig. 3 is dominated by
| χm (ω) |2 [see Eq. (14)], and the reduction in amplitude of position PSD at resonance is
a consequence of the increase in the damping of the mechanical oscillator caused by spin-
mechanical interaction [54]. The susceptibility at the slightly shifted mechanical resonance
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ω =
√
ω2
m +

A−
2

(
Γ + A−

2

)
− 1

2 (Γ +A− )2 ≈ ωm attains the following form

| χm (ωm ) |2max =

[

m2
{

(Γ +A− )2
[(

ω2
m +
A−
2

(

Γ +
A−
2

))

− 1
2

(Γ +A− )2
] }]−1

. (16)

It follows from Eq. (16) that | χm (ωm ) |2max decreases with increase in A− and hence with
increase in the spin-mechanical coupling (g), [see Eq. (15)]. In Fig. 3(b), we depict the decrease
in the amplitude of noise spectrum (at resonance) with spin-mechanical coupling. It follows that
there is a maximum value of spin-mechanical coupling (gmax=0.62ωm) at which the reduction
in position PSD at resonance is maximum and beyond which noise is larger than the peak value
of the position measurement at resonance. This value is indicated by an arrow in Fig. 3(b). We
also note that the smaller values of the spin-mechanical coupling would not be useful as for
these values it would be difficult to detect the change in the peak of position PSD with respect
to the case when coupling is absent. The minimum coupling for which such a change can be
detected corresponds to gmin = 2 × 10−3ωm , as shown in the inset of Fig. 3(b).

3.2. Magnetic field gradient sensitivity

In the preceding analysis, we showed that the spin-mechanical coupling created by MFG
substantially affects the position noise spectrum. This position PSD can be treated as a signal
for which MFG sensitivity can be written as [37, 55]

ηB =
〈|δq̃z (ω) |2〉
∂〈|δq̃z (ω) |2〉

∂B0

×
√

tm , (17)

where, tm is the measurement time. Under cooling conditions, MFG sensitivity can be written
as,

ηB =
〈|δq̃z (ω) |2〉

μBgl z0
�
| χm (ω) |2

[
D + m�ωm〈N〉

√
α
] , (18)

where, D is given by

D = 2m2gα (Γ +A− ) | χm (ω) |2 (ST + SF + SS )

[

ω2
m + ω

2 +
A−
2

(

Γ +
A−
2

)]

. (19)

The sensitivity spectrum of MFG is shown in Fig. 4. The peak value of MFG sensitivity
decreases with increase in spin-mechanical coupling and can attain a value of 1 μTm−1/

√
Hz

at g = 0.11ωm , as shown in Fig. 4(a). Interestingly, there exists an optimum value of spin-
mechanical coupling (gopt=0.11ωm) such that for g < gopt MFG sensitivity improves with
increase in g and for g > gopt its value start increasing, as depicted in Fig. 4(b). For g < gopt ,
MFG sensitivity is dominated by high spin-mechanical noise and mechanical susceptibility,
both of which diminish with increase in g. This results in the improvement of sensitivity
reaching a minimum value at g = gopt . However, for g > gopt , spin-mechanical noise becomes
flat and susceptibility decreases causing the MFG sensitivity to increase with increase in spin-
mechanical coupling. But still in this regime it can acquire a value of the order of 2 μTm−1/

√
Hz

at g = gmax .
So far, the above analysis is based on the preparation of ground state for a rather low value of

pressure (� 10−5 mbar). However, to illustrate the performance of the proposed magnetometer
for higher pressure and temperature, we first write the equation for the phonon number dynamics
[14] using Eq. (3)

〈Ṅ〉 = −2J〈N〉2 − (J +K ) 〈N〉 +M , (20)
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Fig. 5. (a) Steady state phonon number versus g/ωm and Pressure (mbar). MFG sensitivity
versus (b)g/ωm and Pressure (mbar), (c) g/ωm and Temperature (K). In plots (a) and (b)
Te f f =300 K, γopt =1 kHz, while in (c) pressure is 0.3 mbar. The other parameters are
same as in Fig. 3.

where, J = 12
[
G − 9G2

]
χ2Φ, K = ηf /m + J +A− +A+ andM = Dp + γopt +A+, and
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γopt governs the optical scattering rate. The steady state phonon number from Eq. (20) can be
written as

〈N〉ss ≈

√
Dp + γopt +A+

2J
. (21)

This approximation holds for N0 = kBTe f f /�ωm 	 1, where N0 is the initial number of
phonons. Note that MFG sensitivity is influenced by the state of the system. On this note, we
exhibit in Fig. 5(a) that steady state phonon number increases with pressure for a particular
value of g. However, the increase in spin-mechanical coupling leads to decrease in steady state
phonon number for a specific value of pressure [see Fig. 5(a)].

Now, the MFG sensitivity from Eq. (17) for high pressure and temperature can be written as,

ηB =
�

μBgl z0

〈|δq̃z (ω) |2〉
| χm (ω) |2 (D1 +D2 +D3) +D4 (ST + SF + SS )

, (22)

where, Di (i = 1, 2, 3, 4) are given by

D1 =
2gα3

ωm

2mΓ0KBTe f f , (23)

D2 = 108mg�ωm χ
2ΦG2

[
α3

ωm

(
2〈N〉2 + 2〈N〉 + 1

)
+

(

1 +
δ

2ωm

)
α2

J

(

2 +
1
〈N〉

)]

, (24)

D3 = m�ωm2g

[
α3

ωm

{√
A+ + 〈N〉

(√
A+ −

√
A−

)}
+

(

1 +
δ

2ωm

) {
α2√
A+

+ 〈N〉
(
α2√
A+
− α1√
A−

)

+
1

2〈N〉
α2

J
(√
A+ −

√
A−

) }]

, (25)

D4 = −8m2g | χm (ω) |4
{[ (

ωm +
δ

2

)2

+

(
A− − A+

2

) (

Γ +
A− − A+

2

)

− ω2
]

×
[

α3

(
ωm +

δ

2

)
+

(
α1 − α2

2

)
(Γ +A− − A+)

]

+ (α1 − α2) (Γ +A− − A+)ω2
}

.

(26)

Using Eq. (22), the influence of pressure and temperature on MFG sensitivity is shown in Fig.
5. For small spin-mechanical coupling the increase in pressure degrades the MFG sensitivity, as
depicted in Fig. 5(b). However, for a particular value of pressure, MFG sensitivity still improves
with spin-mechanical coupling for the same reasons as explained after Eq. (19). For instance
at a particular pressure, for a regime of g ≥ 0.4ωm , the MFG sensitivity improves and can
even attain a value of the order of 100 mTm−1/

√
Hz, as shown in Fig. 5(b). Further, the MFG

sensitivity is influenced by temperature as exhibited in Fig. 5(c). Again the rise in temperature
degrades the MFG sensitivity. However, for a particular temperature, a strong spin-mechanical
coupling improves the sensitivity and at room temperature, the improvement is of the order of
500 mTm−1/

√
Hz for increase in spin-mechanical coupling [see Fig. 5(c)]. Thus, the present

hybrid nanomechanical sensor harnesses useful MFG sensitivity even under room temperature
and pressure conditions (albeit in the range of mTm−1/

√
Hz).

4. Manipulation of spin

In the preceding analysis, the MFG sensitivity was described by manipulating the mechanical
degrees of freedom and tracing over the spin degrees of freedom. In this section, we show that
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manipulation of spin degree of freedom can also provide the MFG sensitivity. The essential
idea is to prepare the spin-mechanical system in a separable state and allow it to undergo free
evolution in the presence of spin-mechanical coupling. The result of this is that mechanical
coherent states acquire different phase depending on the spin state [24, 25]. For a particular
evolution of time, the acquired phase can be completely written on the spin states, which can be
read by using Ramsey interferometry [37].

Fig. 6. Schematic of the Ramsey microwave pulse sequence.

Here, we consider a single spin NV center, as shown in Fig. 1, driven by microwave fields
and coupled to a mechanical degree of freedom by means of MFG. In diamond substrates,
ms = ±1 levels are typically degenerate. However, this degeneracy can be broken either by a
strain field or by applying a static magnetic field. Thus, it is sufficient to use two-levels for the
spin manipulation. From now onward, we consider only the |0〉 → | + 1〉 transition of the spin.
The Ramsey setup used to manipulate the spin of NV center, is shown schematically in Fig.
6. In the first step, the hybrid system is prepared in a separable state |ψ (0)〉 = |0〉|α〉. Here,
the mechanical system is assumed to be in coherent state |α〉. Now, a π/2 microwave pulse is
applied such that spin state is rotated into the superposition state

|ψ1〉 = Uπ/2 |ψ (0)〉 =
(
|0〉 − i | + 1〉
√

2

)

|α〉 . (27)

Now, the spin-mechanical interaction is introduced by turning on the MFG and letting the
system to evolve freely so as to produce the following state

|ψ2 (t)〉 = Ut |ψ1〉 =
(
|0〉|α (t , 0)〉 − i | + 1〉|α (t ,+1)〉

√
2

)

, (28)

where, Ut = exp
(
− iHint t

�

)
. Note that the spin-dependent mechanical coherent states in Eq.

(28) acquire different phases which are transferred to the spin states after an oscillation period
T = 2π

ωm
and the resultant state can be written as [24]

|ψ2 (T )〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0〉 − i exp
(

4ig2T
ωm

)
| + 1〉

√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|α〉 . (29)

The phase difference written on the spin states can be revealed by applying second π/2
microwave pulse such that the final state becomes

|ψ3〉 =
1
2

[(

1 − exp

(
4ig2T
ωm

))

|0〉 − i

(

1 + exp

(
4ig2T
ωm

))

|1〉
]

|α〉 . (30)

Thus, the population of ground state |0〉 can be written as

P0 =
1
2

(

1 − cos

(
4g2T
ωm

))

. (31)
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The population in Eq. (31) quantifies the following fluorescence signal [56, 57] which can be
monitored to yield the MFG sensitivity

S = β0 + β1

2
− β0 − β1

2
cos

(
4g2T
ωm

)

, (32)

where, β0 is the number of photons collected in one measurement in the absence of spin-
mechanical interaction i.e. the number of photons detected from each spin in |0〉 state and β1

is the number of photons collected in one measurement when there is a phase accumulation of
π during free precision i.e. number of photons detected from each spin in | + 1〉 state. Notably,
the performance of the magnetometer is ultimately limited by quantum fluctuations associated
with photon shot noise and spin projection noise. Thus, the total noise in the MFG is given by
the quadrature sum of these sources of noise [58]

δB0 =
√
δB2

0psn
+ δB2

0spn
, (33)

where δB0psn
and δB0spn

represent the contributions from photon-shot noise and spin-
projection noise, respectively [59]. In NV-magnetometers, a very small number of photons are
collected from each NV spin, which give rise to photon-shot noise. Thus, the photon-shot noise
limited uncertainty can be approximated as δB0psn

≈
√
β, where β =

β0+β1
2 is the average

number of photons collected per measurement. On the other hand, the spin-projection noise
arises due to random projection of spin states into one of the states compatible with the measure-

ment process [59] and is given by [60], δB0spn
= 〈σz〉 =

√
〈ψ3 |σ2

z |ψ3〉 − 〈ψ3 |σz |ψ3〉2. Using,
Eqs. (30,33), the minimum uncertainty in the MFG measurement due to the combination of
photon-shot noise and spin-projection noise can be written as

(δB0)min =

√

β + 1 − cos4
(

4g2T
ωm

)

max
∣∣∣ ∂S
∂B0

∣∣∣
. (34)

Further, using Eq. (32), MFG noise becomes

(δB0)min =
�ωm

√

β + 1 − cos4
(

4g2T
ωm

)

8gμBgl z0T C β
, (35)

where, C is the measurement contrast. Thus, the MFG sensitivity limited by photon-shot noise
and spin-projection noise is given by

ηB = (δB0)min
√

tm ≈
�ωm

√

β + 1 − cos4
(

4g2T
ωm

)

8gμBgl z0
√
T C β

, (36)

where, the measurement time tm is approximated by T . Note that the MFG sensitivity in Eq.
(36) depends on the number of photons collected per measurement β, resonance contrast C,
measurement time, and the spin-mechanical coupling. For an observed contrast of 5% and count
rate of 10 kcount s−1 [20], the MFG sensitivity is shown in Fig. 7. It can be inferred from Fig.
7 that increase in spin-mechanical coupling results in decrease in MFG sensitivity with a value
reaching upto 100 μTm−1/

√
Hz at g = 10ωm . Further, we find that the above analysis remains

unaffected even if the initial mechanical coherent state is replaced by a thermal state [24, 25].
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Fig. 7. MFG sensitivity versus scaled spin-mechanical coupling. Parameters chosen are
C=5%, β=10 kcount s−1, and ωm =38 kHz.

4.1. Experimental accessibility

In the above discussion, we did not include the decoherence from the mechanical oscillator
as the decoherence times are substantially longer than the free evolution time T . Thus, we
can neglect the mechanical decoherence. In our analysis above, we considered a nanodiamond
of radius 50 nm optically levitated in a dipole trap in ultrahigh vacuum along with feedback
cooling [20] and oscillating at a mechanical frequency ωm = 38 kHz. For such a configuration,
the decoherence time corresponding to gas damping is of the order of Tg ∼106 s which is quite
large as compare to T (∼200 μs). So, the decoherence due to gas damping can be neglected.
Further, the feedback induced decoherence [20] operates over a longer timescale (Tfb ∼ ms)
than the free evolution time (200 μs) and its effect can also be neglected. Furthermore, in our
model, the decoherence due to optical scattering (Topt = γ−1

opt ∼ ms) can also be ignored for
the duration T ∼200 μs. Other sources of decoherence include the dephasing of the NV center
due to interaction with other (non-NV) spins in the diamond lattice. However, the associated
dephasing time (∼ 400 ms [61]) is still larger so as not to affect the MFG sensitivity.

5. Conclusion

In conclusion, an NV-center based hybrid nanomechanical magnetometer is proposed where
a spin degree of freedom is coupled to a mechanical degree of freedom by an MFG. We
have described two schemes for MFG sensing: first by analyzing the position spectrum
of the mechanical oscillator, and second by manipulating the spin degrees of freedom.
The first procedure gives a MFG sensitivity of 1 μTm−1/

√
Hz whereas the latter provides

100 μTm−1/
√

Hz. We have explained in detail that such an experimentally accessible
nanomagnetometer functions well under both cooling and ambient conditions and thereby
provides a platform for sensitive magnetometry applications. Our scheme can be extended
to performing vector magnetic gradiometry by coupling the three independent directions of
nanodiamond oscillations to the three cartesian components of MFG.
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