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Integrating Hyperspectral Likelihoods 1n a
Multidimensional Assignment Algorithm
for Aerial Vehicle Tracking
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Abstract—Tracking vehicles through dense environments is an
important and challenging task that is mostly tackled using vis-
ible and near IR wavelengths. Hyperspectral imaging is known
to improve the robustness of target identification, but the massive
increase in data created is usually prohibitive for tracking many
targets. We present a persistent real-time aerial target tracking sys-
tem, taking advantage of an adaptive, multimodal sensor concept
and blending the hyperspectral likelihoods with kinematic likeli-
hoods in a multidimensional assignment framework. The adaptive
sensor is capable of providing wide field of view panchromatic im-
ages as well as the spectra of small number of pixels. The proposed
system does not require large amount of hyperspectral data collec-
tion as we focus on tracking fewer number of targets with higher
persistency. This overcomes the data challenge of hyperspectral
tracking by following dynamic data-driven application systems
(DDDAS) principles to control hyperspectral data collection where
most beneficial. The DDDAS framework for controlling hyperspec-
tral data collection is developed by incorporating prior information
from the filter movement predictions and information from motion
detection. The proposed multidimensional hyperspectral feature-
aided tracker is compared to a 2-D hyperspectral feature-aided
tracker and another cascaded hyperspectral data based tracker by
generating a synthetic, realistic, aerial video on a dense scene.

Index Terms—Aerial tracking, adaptive sensor, adaptive predic-
tion, hyperspectral features.

I. INTRODUCTION

sively studied in the literature. Traditional narrow field of
view (FOV) tracking systems are based on the images provided
by commercially available RGB cameras. In these cases, ap-
pearance, texture, or motion-based features can be descriptive to
distinguish objects [1]-[3]. Unfortunately, such methods are not
effective for wide-area surveillance systems due to poor resolu-
tion imagery. There has been a large volume of studies in wide
FOV aerial tracking using state-of-the-art wide-area motion im-
agery sensors [4]-[7]. However, the desired persistency level
has not yet been reached. Alternatively, a considerable number

‘ 7 IDEO surveillance in urban environments has been exten-
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of other studies focus on using ground moving target indicator
radars, which measure the locations of moving ground objects
as well as their doppler velocities [8]-[11]. With radar, however,
we are limited to only kinematic information to achieve persis-
tent tracking. Although the sampling rate is high, kinematic data
alone is more likely to fail in urban scenes with large scale oc-
clusions and clutter. To achieve a more robust system, one can
utilize more distinctive hyperspectral signatures of materials.

Hyperspectral imaging involves recording extended data in
hundreds of narrow, adjacent hyperspectral bands. Extended
reflectance profiles of different materials can then be further
processed to identify targets. Unfortunately, it is impossible to
transmit or process such high-rate volume of data in real time
from traditional hyperspectral sensors. With recent advance-
ments in sensor technology, it is becoming possible to quickly
collect only small FOV hyperspectral data. As a result, such
a sensor could be employed in a real-time system to augment
traditional aerial tracking modalities with small amounts of hy-
perspectral data. An example of such a sensor, that we consider
in this research, is the Rochester Institute of Technology mul-
tiobject spectrometer (RITMOS) [12]. RITMOS can be tasked
to observe hyperspectrally in only targeted areas where the in-
formation is forecasted to be most beneficial by the tracker.
Meanwhile, it is also capable of capturing a wide FOV panchro-
matic image of the scene that can be used to detect motion and
register subsequent images.

Some previous work has been proposed to address the chal-
lenges of detecting, identifying, and tracking targets in dynamic
scenes with the aid of an adaptive hyperspectral sensor. Wang
et al. [13] proposes a novel sensor capable of providing an om-
nidirectional view and acquiring hyperspectral data efficiently.
They determine moving targets by subtracting panoramic im-
ages in low resolution and then record hyperspectral data in
a region of interest (ROI) determined by the tracker to iden-
tify the target. However, the proposed multimodal sensor based
tracking system is not tested on a challenging scenario includ-
ing intersections, severe obscurations, or parallax. Blackburn
et al.[14] uses commercially available line scanning hyperspec-
tral sensors and panchromatic image to achieve persistent track-
ing. The sensor is tasked to capture hyperspectral information
of the ROI determined by the prior target density. Features are
generally updated several seconds apart whereas a kinematic up-
date is performed 10 times/s. This concept might fail in heavily
cluttered scenes when only kinematic information is updated.
Another study that considers a performance-driven sensor to
achieve continuous tracking is [15]. They propose a novel utility

1939-1404 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on October 03,2020 at 18:57:39 UTC from IEEE Xplore. Restrictions apply.


http://www.ieee.org/publications_standards/publications/rights/index.html

4326

function to perform spatial sampling for hyperspectral data ac-
quisition. The utility function assigns a usefulness value to each
pixel. Hyperspectral data are then recorded if the pixel is deter-
mined to be useful enough based on an empirically determined
threshold. However, this study assumes perfect measurements.
In cluttered scenes, false alarms or missed measurements are
extremely likely to occur which might result in frequent track
losses or switched track identities. In [16], the same sensor con-
cept is utilized to fuse kinematic and hyperspectral likelihoods
in a 2-D assignment algorithm. The tracker achieves persistent
tracking in the case where there are not many similarly painted
vehicles to the TOL. However, with the increasing number of
hyperspectrally similar vehicles, target motion evolution cannot
be approximated in a 2-D approach which in turn confuses the
tracker. In [17], hyperspectral and kinematic outlier elimina-
tion modules are cascaded to reduce the clutter density. Next,
a multidimensional assignment algorithm (MDA) is employed
to better approximate target motion evolution. However, this
approach requires optimum hyperspectral threshold setting to
achieve persistent tracking.

This paper builds upon the works performed in [16] and[17]
and proposes a novel hyperspectral and kinematic likelihoods
fusion method in a multidimensional assignment framework.
The assignment scores are refined by the proposed formula-
tion of the density of hyperspectrally similar vehicles in the
considered short-time window. This way, target losses and reap-
pearances are modeled more appropriately. By considering hy-
perspectral likelihoods in a time window we can relax the opti-
mum threshold setting requirement in [16] and [17]. This avoids
the need to manually assign optimum thresholds for different
vehicles, instead, a consistent global threshold is selected empir-
ically. Finally, a synthetic aerial video is generated considering
a similar camera mounted on top of a tall building (Fixed Plat-
form). The digital imaging and remote sensing image generation
model (DIRSIG) software is used to simulate such scenario and
a large number of vehicles are tracked at separate runs to eval-
uate the tracker compared to [16] and[17] where only a few
vehicles are demonstrated.

II. ADAPTIVE HYPERSPECTRAL SENSOR AND
RESOURCE MANAGEMENT

A sensor capable of rich hyperspectral information can be
very beneficial in consistent aerial tracking of objects. Thus,
RITMOS is utilized as an adaptive performance-driven sensor
to detect, identify, and track targets in highly cluttered scenes. It
was originally designed in 2003 as an astronomical spectrometer
and imager connected to a telescope to perform hyperspectral
classification of stars [12]. RITMOS utilizes a micromirror array
to reflect the light to the one of two sensors; spectrograph and
panchromatic channel. Mirrors in the array can be flipped very
quickly to switch the individual pixels from the panchromatic
to the hyperspectral data mode. To capture the panchromatic
image of a scene, an array of micromirrors reflect the light to
a panchromatic imaging array. Individual micromirrors imag-
ing the object are then tilted to reflect the light to collect the
full spectra of the desired pixel. All these configurations can be
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performed in real time via a user controlled or automated com-
puter interface.

The performance-driven tracking algorithm needs to be de-
signed in a way that it matches the specifications of RITMOS.
It requires about 0.1 s to obtain a panchromatic image of a
scene by RITMOS. On the other hand, the full spectra of a
single pixel in the visible to NIR wavelength takes 1 ms. Spa-
tial and hyperspectral data can be collected simultaneously as
long as micromirrors are tasked properly. The frame rate 1 s
is used to update sufficient track estimates. Panchromatic im-
ages are used to accomplish motion detection. While the sensor
collects panchromatic image, the tracking algorithm outputs the
forecasting results that will be fed to the sensor resource man-
agement system for hyperspectral data acquisition. Full spectra
for 100 pixels can be collected in about 0.1 s. The workflow
of the tracking algorithm matching the sensor specifications is
demonstrated in Fig. 1.

The total time allocated for hyperspectral data acquisition
occupies a large fraction of the tracking workflow since it is still
costly. Hyperspectral data is acquired in a 0.4 s time interval
resulting in the acquisition of the full spectra of as many as 400
pixels. Plenty of time is also allocated for the feature matching
and data association parts since hyperspectral data processing
can be expensive. Within this framework, one can track multiple
targets as long as they do not require an excessive number of
Gaussian terms in the Gaussian sum filter (GSF). Also, one can
adaptively refine Gaussian terms based on the number of tracks
or uncertainty associated with each term. Terejanu et al.[18]
explain how to adaptively refine/remove Gaussian terms at each
time step.

III. SCENARIO GENERATION

The synthetic aerial video generated by the DIRSIG model
is used to evaluate the proposed system. DIRSIG is designed
to generate datasets in a number of modalities such as mul-
tispectral, hyperspectral, polarization, and synthetic aperture
radar through the integration of the first-principles-based ra-
diation propagation modules. However, moving vehicles cannot
be simulated internally in a realistic way. Thus, the simulation
of urban mobility (SUMO) traffic simulator has been integrated
with DIRSIG to produce dynamic imagery for tracking scenar-
ios [19]. Fig. 3 displays a DIRSIG generated nadir RGB image
and snapshot of the traffic simulation with SUMO. Pedestrian
simulation is not performed as the pedestrians are typically rep-
resented by only a few pixels in low-resolution aerial images.
Generated hyperspectral data consist of 61 rectangular bands
within the range of 400 nm to 1 pum with a hyperspectral res-
olution of 10 nm. We are interested in tracking four different
vehicles at separate runs. Trajectories of these vehicles of inter-
est can be found in [17]. The average ground sampling distance
is set to be 0.7 m, yielding low resolution images. A vehicle is
represented with less than 50 pixels (fig. 2) which prevents us
from using appearance-based methods to detect vehicles.

Synthetic hyperspectral data are further processed to consider
factors in the real-world phenomenology. These factors are fil-
ter effects, shot noise, readout noise, integration time, detector
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Fig. 1.

Fig. 2. Two different vehicles, covering around 40-50 pixels in the panchro-
matic image, are shown traveling in the generated scene.

(a) (b)

Fig. 3. (a) An RGB image (394 x 573 pixels) of the area of interest with
only background objects. (b) Vehicular traffic simulation in the same scene with
SUMO.

elements, and analog to digital converters. In the first step, sen-
sor reaching radiance values (— L4 — ) are converted to irradiance
values ( ) on the focal plane surface by the camera equation,
E = = Since, we assume a simple lens model in this study,

G# can be formulated as G# = '— . The focal length of the
lens is denoted as f and is an 1nput parameter provided by the
user in DIRSIG simulation.

The irradiance, F, at the focal plane of the lens is converted
to a voltage signal, S, as

S — EtmtAd ON QE)"Z
hc
where ¢;,,; and A, denote the integration of the sensor and the
detector area, respectively. The charge to voltage ratio factor
is denoted by % whereas QFE corresponds to the quantum
efficiency of the detector. Finally, & is Planck’s constant and ¢
is the speed of light in a vacuum.

The voltage values are then modified to simulate two sig-
nificant noise types; Readout and Shot noise. These two noise
sources account for approximately 95% of the overall noise in a
real-world detector element. The readout noise is a consequence
of the imperfect operation of electronic devices. Conversion of
the same pixel with the same induced charge does not always

result in the same value from the analog to digital converter.

V] (1)

Workflow of the proposed target tracking system using a performance-driven sensor.

This is one aspect of the readout noise. The second aspect is the
insertion of random noise by the sensor which is added on the
pixel charge. The readout noise is modeled as

ov
ON

where NV is anormal distribution and 30e™~
value that also aligns well with RITMOS.

The other major source type is shot noise, which occurs due
to the random arrival nature of photons. In other words, the
number of photons striking the sensor in a random time interval
is likely different than the number at another, equal length, time
interval. This noise factor becomes dramatic when the signal
is low. The shot noise increases with increasing signal levels,
however, its impact degrades since the signal level increases at a
higher rate. We model shot noise using the Poisson distribution
with mean (1) equal to the variance

Nro = N(0,30%) —=[V] )

1S a common variance

e 90
S!
Saturation arises when a maximum signal level is reached in the

readout procedure. We will refer to this noise with Vgar.
Finally, the overall voltage values are converted into a quan-
tized number Sr which accounts for the quantization and
saturation noise
max{ min{S + Npo + Ng, Vsar}, 0}
Vsar

Ng=S— V). 3)

+0.5(27°
4)

where b is the number of bits used in the simulation. In this
process, we do not model dark current noise since we do not
consider it as a primary noise source. An extensive treatment on
this radiometric sampling process is given in [20].

SF — 2])

IV. MOTION DETECTION
A. Median Filtering Based Background Subtraction

Background subtraction consists of subtracting the input im-
age from the modeled background of the scene of interest. This
computationaly efficient method works well in fixed platform
scenarios. In nonstationary platforms, it is susceptible to par-
allax errors in nonplanar scenes. In this case, either additional
processing is required to mitigate parallax noise [4], [21] or
background subtraction needs to be avoided. As we investigate
the contribution of hyperspectral likelihoods to improve identi-
fication accuracy and reduce clutter in large-scale dense scenes,
we generate scenarios from a fixed platform and apply the back-
ground subtraction method.
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Fig. 4. Process to get candidate blobs.

The new input image is denoted as I(x,y,k) whereas
Ip(x,y,k) represents the background frame for the given z
and y coordinates of each pixel at time step k. The result,
Ip(z,y, k) = abs(I(x,y, k) — Ip(x,y,k)), is filtered with a
predetermined threshold. The major challenge lies in generat-
ing a background frame containing only background objects.
Different techniques have been developed for background mod-
eling including Adaptive or Fixed Gaussian Mixture Model-
ing, and Mean or Median filter [22], [23]. In Gaussian Mixture
Modeling, each pixel I (x,y) is represented by a mixture of
Gaussians. The new pixel value I (z,y, k) is compared with the
Gaussians representing that pixel for classification. This method
has proved to be robust against lighting or scene changes, how-
ever, it is not feasible for this study since it is computationally
expensive. Mean or Median filters consider some number of
past frames to generate a background frame by averaging out
moving objects. These filters are computationally cheap which
makes them viable for our tracking system. They are especially
applicable for background dominated scenes. Mean or Median
filters perfectly fit in our system since we only consider vehic-
ular simulation. The background frame is then estimated as

Ip(x,y, k) = median{I(x,y, k —4)}, i=0,1,...,n—1.
®)

In this study, we consider nine previous scans in addition to
the current scan to generate a background mask.

B. Prediction Statistics and Hyperspectral Features Based
Blob Extraction

One major drawback of the median filter approach is that it is
not effective in detecting slow or stopped vehicles. In order to
mitigate this effect, we rely on the strength of the hyperspectral
features of the target. The kernels whose hyperspectral profiles
match to the TOI hyperspectral profile is stored and used to
extract virtual blob or blobs. Each kernel provides the predicted
coordinates of the target in addition to dimensions and velocity
components. This way, each matched kernel can be used to con-
struct a virtual blob, however, this might lead to underestimating
the detected virtual blobs in data association as there might be
large number of closely located blobs. This can be avoided by
designing a clustering method. However, it also should be effec-
tive in separating kernels not in close proximity to each other.
In this direction, we propose a clustering method based on the
transition matrix types applied to each matched kernel in the
GSF. These transition matrices are listed below.

1) Constant Velocity Model.

2) Nearly Constant Coordinated Turn Model (Left Turn).

3) Nearly Constant Coordinated Turn Model (Right Turn).

4) Stop Model.

More details on these transition matrices can be found in
Section V. The hyperspectrally matched kernels that were ap-
plied the same category transition model is assigned to the same
cluster. For instance, matched kernels with constant velocity
models are clustered and a single virtual blob is extracted by av-
eraging all the blobs in this cluster. The same process is repeated
for the ones assigned Stop, Left, and Right Turn Models. This
way we exploit the fact that kernels with the same motion mod-
els are more likely to be located closely compared to different
motion models. By designing hyperspectral data-based virtual
blob extraction, we tackle both the problem of detecting a TOI
that stops for a long time and other false negatives for TOIs in
the background subtraction results. Finally, the resultant fore-
ground mask is applied the morphological closing operation to
remove the noise due to illumination changes, tiny structures,
and other sources and to fill in the gaps. The connected compo-
nent analysis is then applied to uniquely label extracted blobs.
This step is explained in more detail in [17] and the overall
motion detection scheme can be visualized in Fig. 4.

V. INTERSECTION MASK-AIDED GSF

The GSF approximates a nonGaussian distribution by a finite
mixture of Gaussian distributions. This way, nonlinear pdfs can
be represented more accurately. The number of Gaussian ker-
nels in the GSF is crucial in approximating complex motions.
One can use a large number of kernels to ensure robust tracking,
however, it results in increased computational burden. In [16],
the optimum number of Gaussian kernels is reported be around
30 and we implement the same number of kernels in this study.
Initially, the Gaussians are placed within three standard devia-
tion of the center of the user selected target and each Gaussian
is assigned the same weight and covariance matrix initially. The
velocities are initiated as zero. This can be risky in cluttered
scenes, however by eliminating vehicles through hyperspectral
matching, the risk of losing the target initially is minimized
since the clutter density is reduced. More details on the imple-
mentation of the GSF in a similar framework can be found in
[24].

In this paper, specific motion models are adaptively re-
moved/inserted in the GSF based on the external intersection
map. Intersection extraction in panchromatic imagery is pro-
posed in [25]. In [26], we applied an adaptive prediction model
set based on the intersection type and location. However, the
intersection map extraction algorithm might be susceptible to
some errors due to mismatch between the OpenStreetMap data
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and the surveillance scene. Thus, a model set in an intersection is
implemented independent of the intersection type. The adaptive
motion model set is shown in Fig. 5.

VI. TARGET IDENTIFICATION/DATA ASSOCIATION

In this section, we propose a novel two-step data association
method to robustly assign measurement to the corresponding
tracks. Candidate targets are extracted after the background sub-
traction module. A physical gate is drawn by the mixture pdf to
remove outliers. In the first step, the remaining outliers in terms
of hyperspectral features are pruned by the feature matching
method. Further reduction of validated measurements enables
us to implement a costly MDA [28]. Without excluding out-
liers, the MDA algorithm would be too costly and not feasible
for our tracking system. In the second step, assignments are ac-
complished based on the fusion of kinematic and hyperspectral
likelihoods of the hyperspectrally and kinematically matched
measurements. The work flow to get the candidate blobs and
perform assignments are shown in Figs. 4 and 6.

In Fig. 4, the process to compute candidate blobs to be fed to
the data association step is highlighted. Hyperspectral samples
are acquired at detected motion areas and GSF-predicted target
positions. The vector-to-vector feature matching is performed
to eliminate unlikely motion blobs. Additionally, prediction led
features are compared in a similar fashion to extract virtual
possible target blobs as explained in the final paragraph of Sec-
tion I'V-A. This step is required as the median filtering-based
reference model does not adequately account for stopped vehi-
cles. In a traffic light dominated scenario, this drawback results
in track fragmentation and loss.

A. Feature Matching—Hyperspectral Likelihood Estimation

In complex environments, targets are often lost when vehi-
cles move under trees, behind buildings, or near other moving
objects. In these cases, it is important to re-establish the track
when a new detection occurs, as opposed to treating the re-
detected vehicle as a new object. A kinematic-based tracker
might get easily confused due to uncorrected prior estimates
and associate a series of wrong measurements. By eliminating
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hyperspectrally different cars, we can remove the measurements
that might confuse the association algorithm. This way, we in-
crease the likelihood of redetecting a target once it becomes
visible. Without the feature matching process, we might end
up with a high number of validated measurements which might
lead to track termination, wrong association, and a more com-
plex cost minimization problem in MDA. This is especially true
in cluttered scenes.

The sensor is first tasked by a sensor resource management
system to collect hyperspectral data in the vicinity of the cen-
ter of the prior density kernels. This process is sensitive to the
multimodal target motion density. If the motion is not approxi-
mated well we may end up with no target material spectra. For
this reason, the sensor is additionally tasked to capture spectra
around the center of the detected motions from the background
subtraction module. The formulation of the proposed feature
matching method is detailed in [16].

B. Multidimensional Assignment Algorithm

The MDA, first proposed by [29], is known as the real-time
implementation of the multiple hyphothesis tracking filter. Orig-
inally, it was designed to handle S lists of measurements from
multiple sensors. For this reason, it is also called as an S-D
assignment algorithm. Later, it was formulated as a sliding win-
dow that only considers the time steps within the window to
associate the measurements [30], and referred to as the multiple
hypotheses tracking algorithm with a sliding window. In 2-D
assignments, only the last scan, k, is considered for assignment.
This methodology suffers from the lack of time depth which in
turn might result in frequent jumps to wrong measurements in
nonlinear motion cases.

A binary assignment function J is defined as

1 a series of measurements are
J(k,{ms}ﬁf:kfsﬁw) = assignedto 7" (k — S + 1)
0 otherwise
(6)

wherem, = 0,1,...,M(s)andv = 0, 1. M denotes the hyper-
spectrally validated measurement list (see Section VI-A) at scan
kandm = 0andv = 0 correspond to the dummy measurement!
and nonexistant target. T represents a valid track at K — S + 1.
The multidimensional assignment algorithm is then formulated
as

I(k—S+2) M (k—=S+3) M (k—S+4)

TR S S S
my-s4+2=0 mp_513=0 mp_g,4=0

M (k)

Z Sk, {msYe_posios Delk imaYiiosi0) (D

my =0

where a contains the candidate tuples (set of measurements) and
c is the cost function representing the single time-step associa-
tion costs. The goal is to find the tuple minimizing the overall

'Dummy measurement refers to assignment of no physical target or mea-
surement (¢ = 0) to the track, 7", whereas nondummy measurement refers to
assignment of a detected target or measurement (¢ > 0).
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cost function. The association cost formula in our case is given
by

k
<ﬂum5§kﬁaz—M<§h““hks”J§ ®

(k, {ms g 542,0)

where ¢ represents the association likelihoods. For v = 1 and
v = 0, it is estimated as

o(k,ms,v)
Hs(l_PD)liu(ms)(PDT(S7ms))U(mS> v=1
= )
Hs Vfu(m,;) v =0

where 7 and V' are the likelihood function and the volume of
the surveillance area and Pp represents the detection probabil-
ity of the target. We keep the gate (ROI) in the scan k larger
than 2-D assignment case to avoid dealing with a tuple con-
taining a measurement that was not selected for hyperspectral
data acquisition. The binary function u(m;) = 0 in the case of
a dummy measurement and u(m;) = 1 otherwise. We combine
the kinematic and hyperspectral likelihoods as
T =T *Tf (10)
where 75, and 7 represent the filter and hyperspectral feature
based likelihoods, respectively. Estimation of 7 is given in
detail in [30]. To derive the hyperspectral likelihoods, we not
only consider hyperspectral likelihoods but also the number
of hyperspectrally matched objects ¢ to the TOI in the gate at
k — S +2and k — S + 1. Hyperspectral likelihoods for dummy
measurement assignments are then formulated as

7r (s, {msiohg12) = Ps(Gs, Gom1) (an
1
Cs +1 Cs Z Csfl
PS(CsaCsfl) = Csfl _CS (12)
Csfl i 1 Cs < Csfl
1 ¢ =0

where Pg is the probability of associating a measurement to the
track T}’ ¢ ;. As seen in Fig. 7, dummy measurement proba-
bility in the first case decreases with the increasing number of
candidate vehicles in time step k. In the second case, dummy
measurement probability increases with the increasing value of
(s—1-Cs. For nondummy measurement assignment, the hyper-
spectral likelihood is designed as

Tf (37 {ms}]sg:kaJrQ) = PS (Csa <571)FST'L5 (13)
PS (C& ) Cs—l)
1 m
(1_ Cs+1)FS Cs ZCsfl
= CG=1 = G\ o, (14)
(1 C571 T 1 )Fs* Cs < Csfl
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s—1

(b)

Fig.7. Firstcase ({5 > (s—1) in (12) is denoted in (a) whereas (b) represents
the second case (s < Cs—1).

F' denotes the normalized hyperspectral likelihoods and formu-
lated as

Th— f

Ty (15

Fm,]; _
s

where f and T'h denote the hyperspectral matching score and
predetermined threshold used to filter hyperspectral outliers.

In this proposed framework, lost targets due to occlusions
and other factors can be better handled to minimize jumps to
wrong measurements. Finally, the association costs are fed to
the Lagrangian relaxation algorithm in the multitarget tracking
case. Since, we are interested in single target tracking, we do
not deal with the one-to-one measurement-to-track constraint
and use the tuple minimizing the cost function.

VII. SIMULATION RESULTS

The proposed system is tested on four different vehicles (see
Section III). The first track is a white painted vehicle with the
length of 74 frames. It goes through a series of occlusions and
stops at an intersection nearby other white vehicles. The second
and third tracks belong to red and blue painted vehicles with
lengths of 86 and 89 frames, respectively. They follow similar
trajectories to the first track but do not travel nearby a large
amount of similarly painted vehicles. Meanwhile, the fourth
track with a length of 76 frames follows a different path with
less severe occlusions and stops at an intersection for a long
time. This scenario is challenging because of their long stop.
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Fig. 8.
target are sampled hyperspectrally to build hyperspectral target features.

We report detailed results on these tracks. In addition, we test
the proposed algorithm with 37 automatically generated tracks
with an average length of 64.35 frames to observe how well
it generalizes to different scenarios. The first frame of these
tracks are displayed in Fig. 8. We applied three criterion in track
generation routine as listed below.

1) The target is not fully occluded in more than two frames

in the initial five frames.

2) The life of a track must be longer than 30 frames.

3) The target must be in the FOV in all frames of interest.

A high-fidelity scene is accomplished by following the ra-
diometric sampling procedure to DIRSIG output. The panchro-
matic images have ~ 29 db peak signal-to-noise ratio. Noise on
hyperspectral data is measured by the SAM metric. The mean
SAM value between the processed and true hyperspectral data
is /&~ 2.8°. These values meet the RITMOS specifications.

Most of the performance evaluation metrics in tracking liter-
ature are useless in our case since different vehicles are tracked
at separate runs. Thus, we focus on two metrics to measure
tracking rates. The first metric is track purity (TP). It measures
how many frames a tracker maintains a correct track identity
within an estimated gate of the actual target position during the
track life. The second one is the Target Purity (TgP) metric. It
measures the ratio of the maximum number of times a ground
truth is associated to a dominant track to the duration of ground
truth. The TP metric, which only considers the track life, favors
short tracks. On the other hand, the TgP metric considers the
life of the true track. In this case, the TP score for a track has to
be larger or equal to the TgP score for the same track.

The proposed hyperspectral feature-aided tracking (FAT)
with multidimensional assignment algorithm is compared to the
(1) FAT system with a 2-D assignment algorithm [16] and (2)
another similar FAT system with multidimensional assignment
algorithm [17]. Uzkent et al.[16] integrates the hyperspectral
and kinematic features in a similar fashion in a 2-D assignment
algorithm. Uzkent et al.[17] only utilizes hyperspectral features
to eliminate outliers and employs the traditional MDA algo-
rithm. Additionally, we compare the proposed approach to (3)
kinematic only tracker (KT) and (4) hyperspectral only tracker
(ST). In the KT method, 74 in (10) is ignored whereas in ST,
only SAM scores of the filter validated measurements in the
last scan are considered. In the FAT and KT cases, experiments
are performed with S = 2, ..., 6 (sliding window length) in the
S-D assignment algorithm.

A hundred Monte Carlo runs were carried out for each TOI
to minimize the randomness effect on the results. In each exper-
iment, the target detection probability Pp is randomly drawn
from the interval 0.7 < Pp < 0.9. A track is terminated when

Generated tracks to test the proposed approach. Each window has a size of 20 x 20 pixels. Initially, the pixels at the vicinity of the central pixels of each

it has not been associated with any measurement for more than
7 s. Table I, shows the TP and TgP scores for all cases. The best
overall results for the FAT and KT are accomplished with the
6-D assignment.

The KT method struggles in the presence of vehicles with
similar trajectories in large scale dense urban scenes. In addi-
tion, severe obscurations have a higher impact on the KT than
the FAT and ST. We acknowledge that the KT could perform
better in higher frame rate tracking systems where the true tar-
get probability density is more accurately approximated. On the
other hand, the FAT and ST tackle these challenges by filtering
outliers with similar trajectories by utilizing the hyperspectral
features. This way, occlusions can be handled more robustly. The
computationally efficient ST method cannot handle the scenar-
ios including large density of similarly painted objects as it is a
2-D method and does not integrate kinematic features. This can
be seen clearly in the first target case in Table 1.

The proposed FAT algorithm with 6-D assignment algorithm
clearly outperforms the trackers with a single modality (ST and
KT) in any given case as expected. Among four different vehi-
cles, the first target is the one with the highest challenge as it goes
through a number of severe occlusions and travels near a high
density of similarly painted vehicles. In this case, the proposed
method outperforms the other methods reported in [17] and [16]
by around 4% and 27% in TgP scores, respectively. The higher
TP score for the FAT in [17] means more early track termina-
tions compared to the same TP and TgP scores for the proposed
FAT system. This is because of the high density of similarly
painted vehicles nearby the first target. By fusing hyperspectral
likelihoods together with kinematic likelihoods in a multidimen-
sional assignment framework, we can differentiate the TOI with
the aid of better motion evolution approximation and hyper-
spectral profiles. In the other cases, these three trackers perform
persistent tracking. Here, it should be deeply emphasized that
the FAT method in [17] requires a firm threshold setting and a
different optimum threshold value for each of the four different
vehicles to achieve this rates. In other words, it is more sensitive
to nonoptimal threshold values as it corresponds to dealing with
a greater number of objects using only kinematic likelihoods,
increasing the wrong assignment probability. We can expect the
proposed FAT method to outperform the other methods by a
larger margin in the case of poor threshold settings.

To prove the validity of the proposed approach, we also ex-
periment on more samples and compare our approach to other
tracker types in Table II. The proposed FAT method outperforms
the others by at least around 15% on average for the given 37
different tracks. As stated before, the FAT proposed in [17] re-
quires vehicle-dependent threshold setting. It is a tedious task
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TABLE I
TP AND TGP SCORES FOR TOIS WITH DIFFERENT TRACKER TYPES

TP (%) TgP (%)
Tracker/ID Ist 2nd 3th 4th Overall Ist 2nd 3th 4th Overall
2-D (KT) 5746  41.11 19.33 9.65 31.89 18.65  41.11 15.51 9.22 21.12
3-D (KT) 52.51 46.25 3936  28.82 41.74 1694 3793 3151 27.50 28.47
4-D (KT) 4590  33.63 3249  33.85 36.47 15.16  32.81 31.53 33.40 28.23
5-D (KT) 53.74  30.71 3412 3142 37.50 4253 3070 34.11 31.00 34.59
6-D (KT) 49.03 77.82 38.05 3837 50.82 20.85 70.52  36.70 3745 41.38
ST 20.01 8748  65.04  50.24 55.69 4.82 65.05 87.48  43.63 50.25
2-D (FAT) 64.05 7942 91.05 79.54 78.52 5573  76.19  80.49  73.26 71.42
3-D (FAT) 59.31 7040 9196  85.50 76.79 54.41 69.67  85.11 83.97 73.29
4-D (FAT) 6596 7523 9472  91.63 81.89 62.84 7437 9440  91.63 80.81
5-D (FAT) 59.37  81.19  97.37  90.15 82.02 54.75 80.35  97.37  89.95 80.61
6-D (FAT) 75.51 84.45  91.81 89.40 85.29 7448 8337 9151 89.40 84.69
2-D (FAT) [16]  53.84  80.83  79.33 86.47 75.12 4726  80.83  79.22  86.47 73.45
6-D (FAT) [17] 80.14  81.89  94.61 89.63 86.57 70.80  81.09 9426  89.63 83.95

1st Track - White, 74 Frames, 2nd Track - Red, 86 Frames, 3th Track - Blue, 89 Frames, 4th Track - Red, 76
Frames(Optimum threshold settings are used in 6-D FAT approach in [17].)

TABLE II
AVERAGE TP AND TGP SCORES ON 37 DIFFERENT TARGET SAMPLES

Metric/Tracker ~ 6-D (KT) ST 2-D FAT [16] 6-D FAT [17] 6-D FAT (Without Section IV-B) ~ 6-D FAT
TP 24.88 39.82 39.23 44.12 32.88 57.63
TgP 24.88 35.85 39.15 43.64 29.38 57.13

(Fixed, global threshold as in the proposed approach is used in 6-D FAT [17] to get the results.)

to manually assign thresholds for 37 different tracks. Instead,
we assigned a fixed global threshold value with the one used in
our approach for the purpose of comparison. The main reason
behind the drop in tracking rates compared to Table I is the
large-scale density of slowly moving or stopped vehicles in the
scene. Overall accuracy can be improved by implementing a
more sophisticated detection module to reduce false negatives
and false alarms. This is proved by removing the prediction-
based sampling module explained in Section I'V-B. In this case,
tracking rates drop dramatically to around 32.88% and 29.38%
as seen in Table II. Since the main contribution of this study
is on smart integration of hyperspectral likelihoods in a multi-
dimensional assignment algorithm, we used a computationally
simple, nonparametric background subtraction method together
with an efficient GSF-based hyperspectral data sampling based
blob detection module.

VIII. CONCLUSION

We considered an adaptive, multimodal, performance-driven
sensor capable of adaptive hyperspectral data acquisition. This
allows the system to utilize hyperspectral features in real-time
aerial tracking to increase the persistency of tracking in cases
where a single modality struggles. Distinctive hyperspectral pro-
files of different materials are used to prune outliers in the gate to
compensate for the hyperspectral data complexity and simplify
the cost minimization problem. In addition, the hyperspectral
and kinematic likelihoods of the validated measurements are
fused in a Bayesian framework to better discriminate the TOI.
The proposed FAT outperforms the other FAT methods utilizing

2-D and multidimensional assignment algorithm. By modeling
the density of similarly painted vehicles in a time window, we
can better represent dummy and nondummy measurement prob-
abilities especially in the occlusions. In the future, we plan on
generating scenarios on a nonstationary platform and remove
the background subtraction module to avoid parallax error due
to large scale 3-D structures in an urban scene.
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