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Abstract—Autonomous mobile robots are taking on more
tasks in warehouses, speeding up operations and reducing
accidents that claim many lives each year. This paper pro-
poses a dynamic path planning algorithm, based on A* search
method for large autonomous mobile robots such as forklifts,
and generates an optimized, time-efficient path. Simulation
results of the proposed turn and orientation sensitive A*
algorithm show that it has a 94% success rate of computing
a better or similar path compared to that of default A*. The
generated paths are smoother, have fewer turns, resulting in
faster execution of tasks. The method also robustly handles
unexpected obstacles in the path.

I. Introduction
Warehousing applications that require significant hu-

man labor are rapidly moving towards automation, with
focus on large vehicles such as forklifts as Autonomous
Mobile Robots (AMRs). As the size of these mobile
robots increase and their applications diversify, it is
important to have safe and reliable navigation while
maintaining productivity. Autonomous forklifts used in
intelligent material handling applications such as smart
warehousing are the focus of this paper.

The management, movement, and storage of products
is a fast paced and demanding environment where
tasks are arduous and time sensitive. The fast pace of
warehouse operations can lead to accidents. Every year,
about thirty five thousand people get seriously injured
[1] in factories or warehouses while handling material
and out of which 24% of these accidents occur due to
forklifts tipping over and injuring human operators. A
tip-over is caused when a turn is executed with excessive
speed. A significant percent of these accidents could be
prevented with the use of AMRs.

The material handling industry is currently facing an-
other challenge due to a shortage of experienced forklift
operators. The limited availability of human operators
during peak supply seasons is adversely affecting the
production and delivery. If some of these tasks were
automated, industry’s leading services could keep up the
same level of production and supply throughout the year.
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AMRs are intended to assist human operators perform
routine tasks with similar efficiency while co-existing in
an environment with material, equipment, and people.
The safety of the vehicle’s behaviour in autonomous
mode is paramount, as these robots will be interacting
with humans and materials. In the case of an autonomous
forklift, the vehicle’s size and kinematics make it difficult
to use existing navigation solutions that are largely
meant for small differential drive robots. The non-
holonomic nature of the vehicles make it challenging
to maneuver and achieve any desired orientation and
position within the warehouse.
The path planning and navigation must be dynamic

because the warehouse environment is fast paced and
constantly changing to meet fluid demand and supply
requirements. The path planner must be aware of the
changes as they occur and re-plan accordingly. Given a
task to be completed and the associated pick up and
drop off locations within the mapped region, the goal of
algorithm is to not just find the shortest path but to find
the most time-efficient path, constrained by the need to
slow down the vehicle during turns.
The focus of this paper is developing a global path

planner that takes into account, (i) the characteristics of
a large AMR such as its substantial footprint, require-
ment to slow down during turns, and orientation; (ii)
distance to the target; and (iii) potential obstacles. We
propose a modified version of the A* search method to
accomplish this complex path planning task.
The rest of the paper is organised as follows. Section

II briefly explores the existing and upcoming path search
technologies. The A* algorithm is discussed in section III
and the proposed Turn and Orientation Sensitive (TOS)
A* algorithm and the design modifications are detailed
in section IV. A simulation experiment and results are
presented in section V, and conclusions are presented in
section VI.

II. Related Work
Path planning algorithms for mobile robots have

largely been explored considering small holonomic robots
with the path having the shortest travel distance con-
sidered to be optimal. For the application considered in
this paper, the optimal path is redefined to include the
maneuverability and time taken in executing the path.
The importance and need for adapting path planning

algorithms based on specific applications are detailed in
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Souissi et al. [2]. The survey illustrates how uniformly
spaced, irregular, or a mesh grid can be used for planning
paths, specifically those that cater to real-time appli-
cations and dynamic re-planning in case of unplanned
obstacles in the environment. In path planning, whether
in 2-dimensions or 3-dimensions, the complexity and
kinematic details of the robot’s movements need to be
analyzed before selecting a planning algorithm [3].

A thorough survey of 50 path planning algorithms is
described in Rajchandara et al. [4]. Each algorithm has
been individually considered and their objective, use case
and advantages tabulated.

Genetic Algorithms (GAs) have been quite widely used
in the last decade. Tuncer and Yildirim [5] introduce
a new mutation operator to adapt the algorithm to
dynamic environments. The GA also offers flexibility
that is utilized by Yun et al. [6] to implement dynamic
planning that helps the robot move, identify obstacles,
and navigate in an unknown environment.

Deep learning methods are also slowly taking root in
path planning as illustrated in Li et al. [7] where an
improvised Q-learning algorithm is used for dynamic
path planning. Furthermore, algorithms such as Pat-
tern Search (PS), Particle Swarm Optimization (PSO)
and other evolutionary methods have been explored by
Fetanat et al. [8] to improve dynamic path planning
in mobile robots. A method using potential fields for
dynamic planning when the target and obstacles in an
environment are moving is presented in Gi and Cui
[9]. However, all these methods have a computational
overhead that is too high for the safety and quick
responsiveness needed for our application.

Although these algorithms solve the path planning
problem quite effectively, the time taken to train them
is high, and they need to be re-trained when the map of
the environment changes. A review of motion planning
techniques currently being explored in the research com-
munity is presented in Gonzalez Bautista et al. [10]. They
conclude that graph based search algorithms are most
popular when it comes to real world implementations and
are quite adaptable to most use cases. The A* (A-star)
and D* (D-star) algorithms seem to be the most popular
among graph based methods. A comparison of these
two algorithms for differential drive robots is presented
in Setiawan et al. [11]. Based on the simulation and
experimental results, they observe that D* Lite can plan
a shorter path in faster computational time than A*.
However, another such comparison [12] shows that the
D* Lite algorithm is less effective than the A* algorithm
in relatively smaller and less complex environments.

It is therefore important to consider the characteristics
of the system in which algorithm is going to be applied
and the nature of the system, whether static, dynamic
or a mix of both. The application discussed in this paper
has a map already in place due to the generally static
nature of the overall layout of a warehouse. However,
there may be dynamic obstacles, such as humans or

material, in the path of the robot. Due to these factors,
we hypothesize that a graph-based A* search algorithm
that can be implemented dynamically is best suited for
the given application.
Several variations and implementations of A* can be

found such as the algorithm developed by Duchon et al.
[13] where the modification is focused on the computa-
tional time and optimal path. These modifications are
individually evaluated with varied levels of complexity
in the environment. Additionally, vehicle characteristics
such as turning radius are considered by Yang and
Wushan [14] where a grid-based path smoothing method
is proposed and applied to the path provided by A*.
This satisfies the robot’s turning radius, makes a smooth
transition during turning, and considers the deviation
from the path as well. This is important especially in
material handling applications where the robots carrying
a payload have a higher risk of tipping over while
making sharp turns. However, Guruji et al. [15] show
that the computational time of the algorithm tends to
increase exponentially with the size of the environment.
They also introduce modifications to reduce the overall
computation time. An interesting take on irregular grids
and utilization of visibility graphs for A* are presented
in Daniel et al. [16].
An improvisation of A* intended to suit a specific

application of parking autonomous vehicles has been
shown in Dolgov et al. [17]. They use a modified A*
along with an optimization method to find paths faster.
Another similar solution to complex urban path planning
has been presented in Ferguson et al. [18], where a
hierarchical approach with a high level planner first
and then a low level planner have been shown through
experiments. A modified A* specifically intended for
autonomous mobile robots has been presented in Wang
et al. [19] which includes factors such as turning radius,
number of turns taken in a path and the shortest path.
The algorithm computes paths and later counts the
number of edges as the number of turns and stores
the path. The path with the shortest distance and
least number of turns is selected. However, this process
is computationally expensive. The TOS-A* algorithm
proposed in this paper tries to intuitively reduce the
number of turns as the path is being explored and gives
the best solution in a single run.

III. Default A* Algorithm
The proposed TOS-A* planner has been built upon

A* search method to generate a path for an autonomous
robot in a warehouse environment. The working principle
of the default A* algorithm is explained below along
with the key elements in the algorithm that have been
modified to suit the application.
The A* search algorithm requires a pre-defined map

of the environment that can be a static or a dynamic
map. In this paper, we consider a regular grid with
equidistant grid spacing of one unit each, that is each
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step taken covers a distance of one meter. The A*
algorithm considers the blocked regions, the regions that
the robot can traverse, and the pre-defined start and goal
points.

The interesting aspect here that makes A* a smart
search algorithm is the heuristic function. The explo-
ration is concentrated in the direction of the goal rather
than a breath-first search approach such as that used in
Dijkstra’s algorithm. The heuristic function can vary by
implementation. Some examples of which were discussed
in section II. The most commonly used function is the
Euclidean distance which calculates the shortest path
from the start to goal location. In the next section,
the various modifications to the heuristic function is
proposed with regard to the kinematics of the robot and
the vehicle characteristics.

Algorithm 1: A* Algorithm Pseudo-code
Result: Search for a Path from Start to Goal
Initialize open list = [start];
while open list! = [ ] do

Select m with lowest cost;
if m ! = goal then

Remove m from open list;
for all n in child(m) do

Compute cost:

f(n) = g(m,n) + h(n, goal)

if g(m,n) < g′(n) then
Append node to open list where
g′(n) is the previous node’s cost;

else
exit loop;

end
end

else
goal found;

end
end

Where f(n) is cost of the current neighbour n, g(m,n)
is actual cost to move from m to n, and h(n, goal) is
heuristic estimation to move from n to goal. In the
algorithm, m is the current node under consideration
whose neighbours are n.

IV. TOS-A* Algorithm
The AMR used for the experiments in this paper is a

tricycle model forklift. This section details the key factors
considered while applying the modified A* algorithm for
this application.

A. Minimizing Number of Turns in the Path
A forklift’s turning pivot point is near the fork-tip,

similar to Ackermann steering, thus the algorithm has
been modified to give turn paths with a non-zero radius
and assumes 90-degree turns. The algorithm explores

only four of its neighboring nodes, instead of all eight.
The local trajectory planner smoothens these 90-degree
turn paths and also ensures that the vehicle can make a
turn given its footprint within the available space in an
aisle.
In attempt to minimize the number of turns in the path

that is generated, several existing approaches count the
edges present in the planned path. It is then analysed
and a new path is computed to propose one with fewer
number of turns. Another approach is theta* [16] which
uses a line of sight method to derive the shortest path.
However, it does not focus on the number of turns taken
and proposes paths that are close to the edges of blocked
cells.
Additionally, AMRs such as forklifts cannot perform

the turns greater than 90 degrees in an aisle, and local
planners often cannot recover the vehicle’s behaviour and
get it back on track. In order to minimize the number of
turns, and consider the direction of heading in a single
planning iteration, we introduce a modified heuristic
function that is a weighted linear combination of three
individual heuristics as follows,

h(m,n, t, goal, p) = [w0+w1h1(m,n, t)+w2h2(p,m, n)]

(h0(n, goal)) (1)

where h(m,n, t, goal, p) is the modified heuristic that
is a function of starting grid point m, current neighbor
n (e.g. n2, n4, n6, n8), t steps explored in the forward
direction, goal grid point goal and the previous explored
node p. The weights associated with each term are static
and updated based on multiple trials as the heuristic
function is an approximation of the cost from the current
location to the goal.

h0(n, goal) = ||n− goal||2 (2)

The parameter h0(n, goal) represents the Euclidean dis-
tance measurement, that is, the shortest distance to the
goal. This has proven to be the fastest depth-first search
approach, and forms the foundation for the cost function.
However, the disadvantage with using only the Euclidean
distance function is that multiple neighboring cells have
the same cost.
1) Considering Obstacles in Line-of-Sight: Attributes

such as turning and orientation which result in a heuristic
function that assigns a unique cost to each neighbor cell
have been introduced. Penalizing paths that have future
obstacles (paths that would result in a turn) gives a
more directed path search. The heuristic function that
considers the obstacles in the path

h1(m,n, t) = 1 or 0 (3)

where h1(m,n, t) is a binary variable that is 1 if moving
from m for t steps along the direction of m contains
an obstacle. However, this does not consider the prior
heading of the vehicle.
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2) Considering Heading Direction: For automated
forklifts, the forks-first or face-first heading affects the
execution of the task, be it pick up or drop off. Most
warehouses have single-width aisles where a 180 degree
turn is not possible. The direction the AMR is originally
heading is therefore a major contributing factor while
planning the path. and is represented by the heuristic
function as,

h2(p,m, n) = 1 or 0 (4)

where p is the previous node to current node m and n is
the next neighbor. h2(p,m, n) is a binary variable that
is 0 if p, m and n of the vehicle’s previous heading and
the next are in the same direction, and 1 if they are not
aligned. The weight w2 has higher priority in (1) than
w1 based on experiment results and has been explained
in Section V. It influences the decision of whether the
path must take a turn or continue straight. In case
of large scale warehouses, the distance between points
might be too large and the weights associated with the
other heuristics need to be scaled as well. Therefore, the
weights in (1) are added before multiplying with the
Euclidean heuristic in order to normalize the equation
and scale it down to cost of distance.

Section V details and illustrates the advantages of the
TOS-A* and the use cases a associated with it.

V. Simulation and Results
The implementation of the proposed method has been

done using Python and Matplotlib [20] for simulating
the path planning and movement of the robot.

The experiment setup consists of 6 different warehouse
maps of varying levels of density in terms of the shelves
placement and area between the aisles. 50 trials were
conducted for each map and the number of turns
taken, distance travelled and the number of iterations
in which the algorithm found a path was recorded. The
weights assigned to each term were selected based on
the experiments conducted on the first 2 maps and the
same were validated on the remaining 4. The parameter t
relates to the number of steps clear for movement in the
direction of heading, this could be forward or in reverse.
This must be changed for each map based on the aisle
width.

An example of the warehouse layouts setup is shown
in Fig. 1. The top two boxes correspond to loading
and unloading bay areas. The rest of rectangular boxes
represent the shelves or blocked regions of the grid.
The remaining region is open for exploring paths. Each
warehouse setup consists of about 200 combinations
of different start and goal locations. These have been
randomized to have an arbitrary start and goal points,
with a random direction of heading among the 4 options,
namely, +Y (up), −Y (down), +X(right) and −X(left).
In the scenario under consideration using map 1 of

Fig. 1, (0,0), the origin of the grid is the start location
and (6,8) is the goal location as shown in Fig. 2a. The

(a) (b) (c)

Fig. 1: Simulation Example of Real-world Warehouse
Layouts (a) Map 1 (b) Map 2 (c) Map 3.

start point of the robot is on the top left corner near
the first loading station, and the goal point 2 aisles
away in the middle. The forklift is picking up a package,
heading forward towards the goal and dropping off at the
middle aisle. Green region in Fig. 2a shows the algorithm
exploration of the map based on the heuristic functions
illustrated in section IV-A and IV-A.2. Once the goal
is found, the path is formed from the goal point to the
start point choosing those grid cells that have the least
overall cost.

(a) (b) (c)

Fig. 2: (a) TOS-A* Grid Map with Start and Stop
Locations. Generated Paths with Cost by (b) TOS-A*
(c) Default A*.
The path generated by default A* is shown in Fig.

2c where nodes with the shortest distance (cost) to the
goal are successively chosen until goal is reached. This
contains 3 turns and not suitable for a large vehicle such
as a forklift. Fig. 2b shows path generated by TOS-
A* has only one turn, with updated cost based on the
modified heuristic function.
Fig. 3 shows the plot of velocity of the robot as

it traverses the above shown paths generated by both
algorithms. It can be observed that time taken to execute
TOS-A* path is 14 seconds lesser than that of default
A*. Also, OSHA mandates all forklifts carrying cargo
to limit maximum straight path speed to 2.2 m/s and
0.9 m/s at the turning. The regulation requires the
forklifts to slow down, sound horn and then proceed at
all major intersections and turns. This causes additional
deceleration, braking and subsequent acceleration which
in turn affects the overall performance of the vehicle.
Additionally, fewer number of turns in the path will

reduce the operations of the vehicle in every duty-cycle.
The resulting increase in speed of operations will lead
to increased productivity, reduce number of maintenance
cycles, and longer life of these vehicles.
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Fig. 3: Change of Velocity over Time as robot traverses
the Generated Path.

A. Optimization of Parameters
Table I shows summary of 50 trials over 3 varying maps

where TOS-A* algorithm has a much better performance
over default A*. And table II shows the summary of
parameters such as distance of the generated path,
number of turns and number of iterations that the
algorithm needed to explore in order to generate a path.

TABLE I: Performance of TOS-A* over Default A* for
50 Trials (Map 1, 2 & 3) considering Number of Turns
and Direction of Heading.

Performance Map 1 Map 2 Map 3
Better 17 13 18
Similar 30 33 29
Worse 3 4 3

TABLE II: TOS-A* comparison with Default A* for 50
Trials (Map 1, 2 & 3) considering Number of Turns and
Direction of Heading.
Algorithm Map Total Dis-

tance Trav-
elled (m)

Number
of Turns
Taken
(units)

Number of
Iterations

TOS-A* 1 742 97 2466
Default
A*

1 742 108 2513

TOS-A* 2 584 93 2209
Default
A*

2 530 100 1879

TOS-A* 3 613 85 2337
Default
A*

3 590 97 2285

Additionally, 50 trials considering only the turning
heuristic function were conducted using (1) where w2 =
0. The cases where the algorithm did not perform well
were analysed and deduced that there is a need for prior
information such as the direction of heading and the
direction in which the goal is located.

It was observed that the effect of direction on the
overall path is considerable. Based on the experiments
using the first 2 maps, the weights assigned for the
experiments are w0 = 1, w1 = 0.3 and w2 = 0.5 using
these previous trials. The paths generated when w2 is

zero were too cautious and resulted in paths that are
too far diverted from the goal. However, considering
the previous heading information and assigning a higher
weight to w2 than w1 resulted in optimal paths for most
cases as shown in table I.
Furthermore, it can be observed from the two tables

that when the map is simpler with more aisle width,
TOS-A* performs better than default A*. However, in a
more complex environment such as in Map 2, although
TOS-A* performs better, it is only marginally better and
takes more number of iterations in each run. However,
paths proposed by TOS-A* algorithm within an aisle
are straight compared to those proposed by default A*.
This is especially useful for large vehicles such as forklifts
since these vehicles cannot execute turns within an aisle
or a 180° turn. Additionally the local planners can only
smoothen these paths but do not change the original
path given by the global planner. In most cases, the
paths proposed by global planners become sub-optimal
for the application and if the vehicle is backed into an
aisle, recovery by the local planner is usually ineffective.
The parameter t is the number of steps the algorithm

looks ahead at every step it takes. For example, if the
aisle width is 2 and the vehicle is starting off right beside
a shelf, it has a gap of 1 step before it will need to turn
due to the shelf opposite to it. In this case t = 2 is
the optimized value that gives best results. If the aisle
width is 3, then t = 3 is the optimal value. Consider the
example shown in Fig. 4a where the robot can look ahead
only one step and in Fig. 4b where it can look ahead 2
steps and look for a better route with less number of
turns and suitable for a large robot. This value could
potentially be tied in with a sensor such as a LiDAR to
move away from manually modifying it for each type of
map or environment.

(a) (b)

Fig. 4: Parameter t in Map 3 (a) t = 1 (b) t = 2.

B. Dynamic Re-planning Using TOS-A*
In case of warehouse applications, anticipation of

obstacles, be it static such as fallen boxes, oil spills,
etc, or dynamic such as human beings or other vehicles,
is a must. Fig. 5a shows the obstacle in the middle of
the already explored path. As the robot traverses the
path shown in Fig. 2b, the obstacle is identified and the
grid is updated with this information as shown in Fig.
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5b. A new start location is created which is one grid cell
behind the obstacle point.

(a) (b) (c)

Fig. 5: Dynamic Path Planning with (a) Obstacle high-
lighted in Red (b) Updated Grid Map including Obstacle
and New Start Location (c) New Path with Updated
Start Location.

Once the new start point is defined, the algorithm has
to repeat the search since the heuristic function results
in a non-uniform cost map and the prior values cannot
be reused. Fig. 5c shows the new explored cells from the
updated starting point and computes a new path.

A Gazebo simulation using Robot Operating Sys-
tem (ROS) has been set up with the model of the
forklift, to simulate real-time operation of the vehicle
in a warehouse. Communication with the real forklift
has been setup with vehicle kinematics model encoded
into the navigation stack. TOS-A* is currently being
incorporated into the ROS navigation stack for real-time
path planning and navigation.

VI. Conclusion
Autonomous mobile robots can safely and reliably

navigate a warehouse in minimum time, by reducing the
number of turns and heading changes in the path. A
new path planning algorithm was proposed considering
these attributes in addition to the path length. The
proposed TOS-A* algorithm was simulated and results
show that it outperforms default A* in producing time-
efficient paths, considering the need to slow down for
turns. Also, the generated paths are smoother with fewer
turns thereby reducing the chances of tipping over. It
considers the direction the vehicle is heading in and
attempts to maintain the same. This results in faster
execution of tasks and more energy effective operation
of the robot.
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