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A B S T R A C T   

Identifying objects or pixels of interest that are few in numbers and sparsely populated in imagery is referred to 
as target detection. Traditionally, the inverse modeling (IM) approach, usually a slow and computationally 
intensive process, is used for detecting targets using surface reflectance spectra. For the emerging online methods 
in remote sensing, modeling the at-sensor radiance of target material, i.e., a forward modeling (FM) approach, 
can be used. Compared to the IM approach, FM is better suited to online methods due to its potential for 
adaptation to regional atmospheric modeling. Spectral knowledge transfer of a target from a known to an un
known atmospheric condition is the primary outcome of an efficient target detection framework. However, such 
an endeavor requires an exhaustive assessment of the target detection process under different atmospheric 
models and associated uncertainties. The objective of this work is to assess the quantitative impact of atmo
spheric parameters on the detectability of engineered targets. Specifically, the impact of critical atmospheric 
parameters such as aerosol optical thickness (AOT), standard atmospheric profiles, and aerosol models are 
considered. For this effect, we designed a multi-platform image acquisition setup that acquired targets concur
rently using a ground-based terrestrial hyperspectral imager (THI), an airborne hyperspectral imager (AVIRIS- 
NG), and a space-borne multispectral imager (Sentinel-2). We used a point-based spectroradiometer and pixel- 
based THI to collect the in-situ reference target reflectance spectra and generated a radiance spectral library 
by simulating TOA radiance spectra using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) 
radiative transfer model. We have considered two cases of target radiance simulations, i.e., (i) corresponding to a 
grid of different AOT values for a predefined atmospheric and aerosol profile, and (ii) corresponding to varying 
combinations of atmospheric and aerosol profiles at a given AOT. The detection has been carried out using 
multiple target detection algorithms. Results indicate that the spectral knowledge-based targets can be detected 
in remote sensing data under different atmospheric model scenarios using the FM approach. A detection rate of 
about 75% and 50% have been consistently obtained for remote sensing data from airborne and space-borne 
platforms with a false alarm (FA) rate of 10− 2 to 10− 3 respectively. Change in the AOT across atmospheric 
models has resulted in decision-changing implications in the target detection modeling. The selection of the 
wrong atmospheric profile can potentially aggravate the number of FAs produced by a particular detection al
gorithm.   

1. Introduction 

Current optical remote sensors facilitate data capture at a high 
spatial and spectral resolution, thereby aiding material identification at 
a finer scale. This advancement has led to the use of optical remote 
sensing data for solving several recurrent problems in remote sensing 
applications such as target detection (Geng et al., 2016; Xu et al., 2017), 

classification (Cheng et al., 2017; Lu et al., 2017), change detection 
(Hussain et al., 2013; Tewkesbury et al., 2015), anomaly detection (Qu 
et al., 2017; Taghipour and Ghassemian, 2017), etc. Target detection 
using optical remote sensing data has gained substantial attention in the 
last decade in various applications in defense (Briottet et al., 2006), 
security, surveillance (Yuen and Richardson, 2010), agriculture (Chen 
et al., 2019), etc. Target detection refers to detecting sparsely distributed 
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engineered objects/materials (e.g., 5 to10 pixels out of a million) in the 
imagery. The sparse nature of targets combined with the propagations of 
uncertainties in the imaging process, such as sensor noise, atmospheric 
scattering, absorption, target surface characteristics, etc., deters or 
hinders a reliable detection rate. Target detection from remote sensing 
platforms such as unmanned aerial vehicles (UAVs), airborne flights, 
etc., requires a multi-dimensional approach to improve detection ac
curacy, including mitigation of uncertainties caused by inefficient at
mospheric parameter modeling. There have been a few studies on the 
effect of various factors such as the size of the target, target-background 
interaction, sensor characteristics, algorithms, etc., (Wang and Xue, 
2017; Yadav et al., 2018) on target detection performance. Still, the 
impact of the radiative transfer model (RTM)-based estimates of the 
atmospheric variables such as standard atmospheric profiles, aerosol 
models, etc., and associated uncertainties related to target detection 
performance has been overlooked and, in general, reported less in the 
literature (Yarbrough et al., 2010; Sundberg, 2018; Kim et al., 2019). 

Usually, the target detection chain involves RTM (Fig. 1) in the 
image pre-processing stages to compensate for the atmospheric effects 
(i.e., scattering and absorption of the signal) from the measured at- 
sensor radiance. Such a process is termed atmospheric correction or 
compensation (AC) or inverse modeling (IM) and is generally carried out 
using physics-based models such as MODerate resolution atmospheric 

TRANsmission (MODTRAN), Second Simulation of the Satellite Signal in 
the Solar Spectrum (6S) (Ientilucci and Bajorski, 2006; Ientilucci and 
Adler-Golden, 2019). It is common to use the AC mode of data pre- 
processing for numerous remote sensing applications (Agapiou et al., 
2011; Martins et al., 2017). The AC approach for quantifying remote 
sensing products involves intensive computing resources (big remote 
sensing data) and is often time-consuming (pixel by pixel inversion), a 
bottleneck for decision-makers. An alternative approach, forward- 
modeling (FM), uses in-situ reflectance data of the objects at the 
ground to approximate their at-sensor spectral radiance (Matteoli et al., 
2009; Ayhan and Kwan, 2017; Ientilucci, 2017). The FM approach re
quires less computational resources as the modeling process is limited to 
generating a few spectral vectors corresponding to a gamut of atmo
spheric parameters, unlike the AC approach, which would require the 
generation of several data cubes for the same (Matteoli et al., 2010). 

Physics-based models typically require multiple parameters to 
approximate the atmosphere, such as columnar temperature, pressure, 
water vapor, ozone, gaseous transmittance, scattering model, aerosol 
optical thickness, etc. The reliability of remote sensing-based studies 
depends upon the quality of estimation of these atmospheric parameters 
(Nia et al., 2015; Marcello et al., 2016; Sabater et al., 2017; Seong et al., 
2020). In terms of data models and hardware capability, substantial 
developments in computing infrastructure have encouraged researchers 

Fig. 1. Target detection domains.  

Fig. 2. Two different space–time target detection scenarios, with differing atmospheric conditions (AtmU , AtmK), leading to a potential mismatch of atmo
spheric parameters. 
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to explore efficient methods to expedite onboard methods for various 
recurrent problems in remote sensing (Bue et al., 2015). Although some 
studies have been reported on onboard AC, their scope remains limited 
due to the exhaustive resource required for such implementations. On 
the other hand, accelerated hardware components such as FPGA have 
shown that real-time applications, such as object detection and classi
fication, can be carried out given computational overheads are opti
mized (Gyaneshwar and Nidamanuri, 2020; Nascimento et al., 2020). 
One of the limiting factors for carrying out such operations is un
certainties in modeling the atmospheric parameters. Although few 
studies have analyzed the impact of modeling the atmospheric param
eters on remote sensing-derived products, exhaustive studies have been 
less reported in the literature. A study by Matteoli, Ientilucci, and Ker
ekes (2010) has laid out a detailed analysis of the computational and 
operational aspects of the FM approach for target detection. They 
simulated different radiance spectra (81 in total) for various geometric 
and illumination parameters. But atmospheric variability parameters 
such as atmospheric models and aerosol models were not tested or 
evaluated. Axelsson et al. (2016) implemented the FM method for target 
detection but used in-scene information rather than the physics-based 
RT models to derive target information. Also, the dataset used in that 
study had a limited spectral channel range (400–1000 nm) acquired 
from an altitude of only1000 m, which inhibits observable effects of 
atmospheric variables on target detection performance. 

The objective of this research is a critical analysis of the performance 
of target detection in multi-platform hyperspectral and multispectral 
imagery under different atmospheric models and parameter scenarios. A 
hypothetical situation, illustrated in Fig. 2, in which the target 
cognition-recognition cycle becomes an integral part of such a frame
work’s overall applicability arises in an onboard target detection 
framework. Target cognition refers to the first instance of target infor
mation (spectral characteristics) acquisition; target recognition refers to 
the usage of spectral information acquired in the cognition stage to 
identify the target thereafter. This work aims to 1) analyze the impact 
the atmospheric model has on target detection, and 2) assess the 
applicability of the FM approach for target detection in a multi-platform 

target detection dataset. We have modeled the atmospheric variables 
using the 6S RT model and transformed the in-situ target reflectance 
spectra to at-sensor radiance spectra using standard atmospheric models 
containing pre-computed estimates of the atmospheric parameters. 
Finally, we carried out target detection using various state-of-the-art 
target detectors and compared the results for all the combinations of 
atmospheric state variables and algorithms. 

2. Materials and methods 

2.1. Target data acquisition experiment 

We designed a multi-platform image acquisition setup in which the 
targets were acquired concurrently using a ground-based terrestrial 
hyperspectral imager (THI), an airborne hyperspectral imager (AVIRIS- 
NG) (Bhattacharya et al., 2019), and a space-borne multispectral imager 
(Sentinel-2), as shown in Fig. 3. In this experiment, AVIRIS-NG captured 
imagery with 4 m spatial resolution at 5 nm spectral resolution in the 
400–2500 nm wavelength range with 425 channels. THI is a push-broom 
hyperspectral imager (Headwall Photonics Inc., USA) that captures 
imagery in the VNIR (400–1000 nm) range of electromagnetic spectrum 
with 837 channels sampled at 1 nm interval. The experiment was carried 
out on a natural landscape area on 18th March 2018 at Gudalur city, 
located in Tamilnadu, India. Five artificial nylon and cotton sheet tar
gets, designated as N1G (green nylon sheet), N2R (red nylon sheet), C1W 
(white cotton sheet), N3Y (yellow nylon sheet), and N4B (black nylon 
sheet) (Jha et al., 2020), each of size 10 × 10 m, were used for the 
experiment. Targets N1G and N3Y were placed on grass and soil back
grounds, respectively, to introduce a natural camouflage scenario in the 
visible (400–700 nm) portion of the electromagnetic spectrum. Further, 
targets such as N1G, N2R, N3Y, and N4B have similar spectral charac
teristics (same nylon material), which provide an opportunity to test the 
reproducibility of detection performance of similar material by different 
algorithms. The spatial location of the targets was recorded using a GPS 
device. As the target panel size is relatively larger than the pixel size for 
airborne imagery, for each target, we marked a 16-pixel region of 
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Fig. 3. Experimental setup of the Gudalur spectral target-detection (GST-D) dataset with (a) target positions as seen from Google Earth imagery for the targets – N1G, 
N2R, C1W, N3Y, and N4B (b) respective in-situ target reflectance spectra, and (c) the experimental multi-platform target acquisition setup used in this paper 
(Adapted from Jha et al., 2020). 
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interest (ROI) as the target footprint as recommendations by Manolakis 
et al. (2003). In the case of space-borne imagery, 4-pixel ROI was 
marked for N1G, N2R, N3Y, and N4B. For the target C1W, 6-pixel ROI 

was marked in space-borne imagery for C1W as a greater number of 
pixels were diffused and appeared as target due to distinct imaging ge
ometry. Moreover, due to different spatial resolutions of airborne and 
space-borne imagery, the ROI in space-borne imagery may also contain 
sub-pixel target material. The targets were acquired from platforms with 
different operational altitudes (airborne: ~ 4–6 km and space-borne: 
~705 km) to gauge the two different sets of concomitant atmospheric 
conditions allowing us to assess atmosphere-induced uncertainty in the 
target detection process. 

2.2. Data pre-processing: Reference target spectra and imagery pre- 
processing 

We deployed two different hyperspectral sensing instruments: a 
point-based spectroradiometer and a pixel-based THI to collect the in- 
situ reference target reflectance spectra. Although the THI captures 
imagery at about 1 cm spatial resolution, we spatially resampled im
agery to 20 cm spatial resolution. The THI raw data were calibrated 
using a white reference panel to obtain the radiance data cube and 
subsequently converted to reflectance cube using the in-scene empirical 
line (EL) method (Smith and Milton, 1999). Different patches over the 
target were selected, and spectral responses were averaged to yield a 
THI in-situ target spectrum. In addition, we collected point-based in-situ 
target spectra in the 400–2500 nm wavelength range using a field 
spectroradiometer (Spectra Vista Corporation, HR-1024i, USA) (Field 

Fig. 4. 6S RT model-based target modeling system design for evaluating spectral target detection performance in multi-platform remote sensing imagery setup.  
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Fig.7. Target detection in airborne imagery: variation of PFA due to changes in AOT for target detection in airborne imagery. Illustrated are PFA values when the PD =

75% for targets (a) N1G, (b) N2R, (c) C1W, (d) N3Y, and (e) N4B with simulated TOA target radiance spectra at different AOT values between 0 and 5 using the point- 
based target reflectance. 
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Spectroscopy Guide with SVC i-series Spectroradiometers, 2010) and 
further processed the spectra to match to the spectral range of AVIRIS- 
NG and Sentinel-2 sensors via spectral resampling and convolution 
operation using the respective sensor response function (SRF). In the 
target spectral data acquired using the THI sensor, we omitted data 
beyond 900 nm due to inherent sensor noise and low signal-to-noise 
ratio (SNR). In the case of THI-based input target reference spectra, 
we resampled the AVIRIS-NG imagery to THI wavelength range which 
resulted in imagery with 104 spectral bands for target detection. 

Since we used forward modeled target spectra for detection in this 
experiment, the target imagery needed to be of the top-of-atmosphere 
(TOA) radiance. For this, we used the level-1 TOA radiance product of 
Sentinel-2 by converting the original level L1C (TOA reflectance) to TOA 
radiance using the Sentinel application platform (SNAP) tool processor 
called Sen2Cor (Louis et al., 2016). The AVIRIS-NG data is available as 
TOA radiance data and thus needs no pre-processing such as radiometric 
calibration or atmospheric correction steps. However, we removed the 
bands in the water vapor absorption region of the AVIRIS-NG imagery 
between 1348 and 1443 nm, 1804–1954 nm, and 2485–2500 nm. The 
resultant imagery contained 370 spectral bands. We resampled the 
Sentinel-2 satellite imagery to 10 m spatial resolution to match the 
target size. 

2.3. Target signal simulation: Atmospheric processor 

Since electromagnetic (EM) radiation in the optical region undergoes 

perturbation caused by atmospheric components such as aerosols, water 
vapor, clouds, dust, etc., various physics-based RTMs need to be used to 
approximate different parameters to compensate for the net atmospheric 
effects. The 6S radiative transfer code models the electromagnetic ra
diation in the 400 to 2500 nm range of the EM spectrum. The governing 
equation for estimating surface reflectance reaching a remote sensor is: 

ρ*
toa =

π*LTOA

μsEs
, (1)  

where ρ*
toa is the top-of-atmosphere reflectance, LTOA is the TOA radi

ance, μs is the cosine of the solar zenith angle, and Es is the TOA solar 
flux. Considering the scattering (Rayleigh and Mie) and absorption of 
radiation reaching the sensor, for a simplified case of uniform a Lam
bertian surface, Eq. (1) can be written as: 

ρ*
toa(θs, θv,φs,φv) = Tg(θs, θv)

[

ρa +T(θs)T(θv)
ρac

1 − Sa × ρac

]

, (2)  

where θs, θv and φs,φv are the geometrical parameters (zenith and azi
muth angles for solar and view positions of sun and sensor, respectively), 
ρa is the atmospheric path radiance, Tg is the gaseous transmittance, 
T(θs) is the transmittance from the sun to the ground, T(θv) is the 
transmittance from the ground to the sensor, Sa is the spherical albedo 
and ρac is the atmospherically corrected surface reflectance, also known 
as bottom-of-atmosphere (BOA) reflectance. 

The 6S RTM incorporates various standard atmospheric models 
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defined by approximation of climatic conditions, such as Tropical, 
Midlatitude Summer, etc. The atmospheric profiles have predefined 
columnar profiles (0–100 km) of different variables such as atmospheric 
pressure (mb), temperature (oK), water vapor (g/m3), and ozone con
centrations (g/m3) as a function of height (km). Further, based on 
aerosol properties such as aerosol optical thickness (AOT), the mean 
radius of the aerosol particle, real/imaginary refractive indices, particle 
distribution function, and angstrom coefficient, several standard aerosol 
models (continental, urban, maritime, desert, etc.) are also defined in 
the 6S model. Taking into account for these variables explicitly as a 
function of wavelength λ, Eq. (2) can be modified as:  

where P is the atmospheric pressure (mb), UH2O is the integrated at
mospheric water vapor (cm), UO3 is the integrated columnar ozone 
concentration (cm-atm), m is the air-mass given as 1

cosθs
+ 1

cosθv
, TgOG ,TgH2O 

and TgO3 
represent the gaseous transmittance by gases like OG = {CO2,

O2,CH4}, water vapor (H2O) and ozone (O3) respectively; ψλ represents 

the aerosol components described as: 

ψλ = (τa,ω0, Pa), (4)  

where τa is the AOT, ω0 is single scattering albedo and Pa is the phase 
function at a given wavelength λ. 

Inverting Eq. (1), we have: 

LTOA =
ρ*

toa × μsEs

π , (5)  

where ρ*
toa = ρλ

toa and is given by Eq. (3). Since the values of ρac for the 
targets are known a priori from the in-situ measurements, we can 

simulate LTOA reaching the sensor owing to different atmospheric vari
ables using Eq. (3). The radiance spectral library was constructed by 
multiple runs of the 6S code using the in-situ target surface reflectance. 
A schematic diagram of the overall process is shown in Fig. 4. 

We considered two cases of target radiance spectra simulations: (i) 
simulation corresponding to a grid of different AOT values (0–5) for a 
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Fig. 10. Airborne imagery detection results. Illustrated are PFA values when the PD = 75% for the N2R target with simulated TOA target radiance spectra at (a-c) 
AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different standard aerosol models (N-Aero. = No Aerosol, Cont. = Continental, Mar. = Maritime, Urb. =
Urban, Des. = Desert) and atmospheric models (i.e., colored line) using the point-based target reflectance. 
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predefined atmospheric (Tropical) and aerosol (Continental) profile and 
(ii) simulation corresponding to different combinations of atmospheric 
and aerosol profile at a given AOT’s = {0.48,0.89,4.94} corresponding 
to equivalent visibility of approximately 15 km, 7 km, and 1 km 
respectively (Bhatia et al., 2018). Considering the geographical location 
of the target scene (Tamil Nadu, India), a tropical atmospheric profile 
with a continental aerosol model were selected (Mishra et al., 2020) for 
the predefined parameters of the case (i). Denoting different atmo
spheric profiles as Patm = {Tropical, Midlatitude Summer, Midlatitude 
Winter, Subartic Summer, Subartic Winter, US62}, aerosol profiles as 
Qaer = {No aerosol, Continental, Maritime, Urban, Desert), TOA radi
ance TOARAD(r)i, for case (i) is represented as: 

TOARAD(r)i = ψPatm Tropical ,Qaer Continental
(AOTvar), (6) 

where, 
AOTvar = {0,0.5, 1, 1.5,2, 2.5, 3,3.5, 4,4.5, 5}, and subscript i =

values of TOA radiance at different AOT values. 
An example illustrating the simulated radiance spectra from the at

mospheric processor following Eq. (6) is shown in Fig. 5. 
Further, TOARAD(r)i for case (ii) at different discrete values of AOT is 

given as: 

TOARAD(r)i = ψAOTf

(
Patmp,Qaerq

)
, (7)  

where, AOTf = {0.48,0.89,4.94}, subscripts p and q represent different 

atmospheric and aerosol profiles. 

2.4. Target detection algorithms 

Mathematically, spectral target detection is formulated as a binary 
hypothesis testing problem. Null hypothesis H0 refers to the absence of 
the target, whereas the alternative hypothesis H1 refers to target present. 
If we represent an image as I(m×n) with m rows, n columns, and k bands or 
spectral channels such that each pixel xk

i=1 ∈ Ik,mn, then for an assump
tion of a multivariate normal distribution of target and background 
(non-target pixels), the target detection problem can be expressed as: 

H0 : x = n
H1 : x = s + n, (8)  

where n ∼ N(μ,Σ) is the noise or background with a mean (μ) and 
covariance matrix (Σ) as distribution parameters; s is the known target 
sample spectrum. Targets can occupy either a full or partial pixel. If the 
target occupies one complete pixel, it is considered a full pixel, and the 
statistical detectors for this scenario are generally governed by the hy
pothesis stated in Eq. (8). For sub-pixel target detection, the hypothesis 
is modified as: 

H0 : x = n
H1 : x = αs + βn, (9)  
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Fig. 11. Airborne imagery detection results. Illustrated are PFA values when the PD = 75% for the C1W target with simulated TOA target radiance spectra at (a-c) 
AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different standard aerosol models (N-Aero. = No Aerosol, Cont. = Continental, Mar. = Maritime, Urb. =
Urban, Des. = Desert) and atmospheric models (i.e., colored line) using the point-based target reflectance. 
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where x ∼ N(0,Σ) under H0 and x ∼ N
(
αs, β2Σ

)
under H1, α refers to 

the fill fraction of the target or abundances if s represents a matrix 
containing endmembers. Since targets in this experiment fall under both 
the full-pixel and sub-pixel categories, we used the matched filter (MF), 
adaptive cosine estimator (ACE), and constrained energy minimization 
(CEM) detectors. Several sophisticated and advanced target detection 
algorithms have been proposed in the literature, such as kernel-based 
methods (Wang et al., 2013; Kwan et al., 2020)), machine learning 
methods (Zhang et al., 2014; Du and Li, 2018). However, since the 
objective of the paper is not the evaluation of target detection perfor
mance as a function of the choice of algorithms, we chose classical and 
robust detectors, which have been widely used in the research com
munity. A detailed discussion on the detectors used in this work can be 
found in Manolakis et al. (2016); nonetheless, we provide a brief 
formulation of these detectors. 

2.5. Matched filter (MF) 

For a full-pixel target, the detection model described in Eq. (8) is 
modified as: 

H0 : x = n
H1 : x = s + αn, (10)  

where n ∼ N(μ,Σ), and α is the unknown parameter. The detection 
model described by Eq. (11) is an additive model (Eismann, 2012) and 

assumes equal covariance (Σ) under both the hypothesis H0 and H1. 
Estimating μ̂, Σ̂, and α̂ using the maximum likelihood estimation (MLE), 
we express the MF score r as: 

rMF(x) =
(s − μ̂)T Σ̂

− 1
(x − μ̂)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(s − μ̂)T Σ̂
− 1
(s − μ̂)

√ . (11)  

2.6. Adaptive cosine estimator (ACE) 

For a sub-pixel target, the signal model for the ACE detector is based 
on replacement model (Manolakis, 2005) and is derived by modifying 
Eq. (9) as: 

H0 : x = βn
H1 : x = αs + βn, (12)  

where α, β are unknown parameters and n ∼ N(0,Σ). Unlike other 
signal models, where the covariance matrix Σ is assumed to be equal for 
both the null and alternate hypothesis, ACE assumes different Σ (Σ1,Σ2)

and β for each of the hypotheses. Estimating the unknown parameters α, 
β0,β1, Σ1, and Σ2, ACE detector score is given by: 

rACE(x) =
(
xT Σ̂

− 1
s
)(

sT Σ̂
− 1

s
)
− 1
(
sT Σ̂

− 1
x
)

(
xT Σ̂

− 1
x
) . (13)  
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Fig. 12. Airborne imagery detection results. Illustrated are PFA values when the PD = 75% for the N3Y target with simulated TOA target radiance spectra at (a-c) 
AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different standard aerosol models (N-Aero. = No Aerosol, Cont. = Continental, Mar. = Maritime, Urb. =
Urban, Des. = Desert) and atmospheric models (i.e., colored line) using the point-based target reflectance. 
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2.7. Constrained energy minimization (CEM): 

Unlike the target detector models described, which assume a pre
defined statistical distribution of the target-background, the CEM de
tector operates independently of any deemed statistical distribution of 
the target-background subspace. CEM is based on energy minimization 
of the background pixel and is equivalent to a finite impulse response 
(FIR) filter and is given as: 

rCEM(x) =
(
sT R̂

− 1
s
)

(
R̂

− 1
s
)

Tx
, (14)  

where R̂ is the estimated background correlation matrix. 

2.8. Quantitative evaluation of detection performance and spectral 
analysis 

The target detection results using the algorithms considered from 
airborne and space-borne imagery were compared for all the simulated 
target reflectance spectra (shown as the radiance spectral library in 
Fig. 4). For reporting the detection performance, we used the receiver 
operating characteristic (ROC) curve, a graph between the probability of 
false alarm (PFA) and the probability of detection (PD) given as: 

PD =
Number of correctly identified target pixels

Total number of actual target pixels
and

PFA =
Number of pixels identified as false targets

Total number of non − target pixels
.

(15) 

Furthermore, we performed a quantitative spectral analysis of the 
simulated target spectra comparing with the image-based target radiance 
spectra. The spectral analysis gives an insight into the underlying physical 
process that might result in a mismatch between image-derived target 
spectra and the input reference target spectra caused by a mismatch of the 
atmospheric model assumption. For each of the simulated target radiance 
spectra, we applied two widely used spectral matching metrics: spectral 
angle mapper (SAM) (Kruse et al., 1993) and spectral information diver
gence (SID) (Chang, 2000), and compared them with the image-derived 
(both from the airborne and space-borne platforms) target radiance. 
Given any two n-length vectors A = {a1, a2, a3, a4⋯an}

t, and 
B = {b1, b2, b3, b4⋯bn}

t, SAM and SID are defined as: 

SAM(A,B) = cos− 1
(

〈A,B〉
‖A‖2‖B‖2

)

, (16)  

where 〈〉 denotes the dot product of two vectors and ‖.‖2 denotes the 
Euclidean norm of a vector. 
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Fig. 13. Airborne imagery detection results. Illustrated are PFA values when the PD = 75% for the N4B target with simulated TOA target radiance spectra at (a-c) 
AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different standard aerosol models (N-Aero. = No Aerosol, Cont. = Continental, Mar. = Maritime, Urb. =
Urban, Des. = Desert) and atmospheric models (i.e., colored line) using the point-based target reflectance. 
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where D(A‖B) and D(B‖A) are called the relative entropy of B with 
respect to A and relative entropy of A with respect to B, respectively. 
Since SID is a probabilistic approach to measure the spectral similarity 
between two spectra, the SID score is an indication of the behavioral 
difference in the probability distribution function of any two pixels. A 
score close to zero from the SAM or SID indicates the spectra being 
compared are similar (Chang, 2003; van der Meer, 2006). 

3. Results 

In this section, we present the results of target detection for various 
TOA radiance spectra simulated under different atmospheric conditions. 
For ease of comparison of the performance by various algorithms, we 
benchmarked the PFA for detection results at PD = 75% for airborne 
image and PD = 50% for space-borne imagery (Jha and Nidamanuri 
2020). To illustrate this, we present an example (result for N1G by MF 
under various AOT conditions) in Fig. 6, showing the approach used to 
report results in this paper. We fixed the PD at 75% (shown by the 
horizontal dotted line) and noted the first intersection point of the ROC 
curve and the PD = 75% line to identify the respective PFA. 

3.1. Target detection performance from airborne imagery for simulated 
target spectra induced by AOT and atmospheric model assumption 

3.1.1. Target detection performance under varying AOT conditions 
This section presents the target detectability at various AOT values in 

the range 0–5 for two different input target reference sources, i.e., point 
and pixel mode with a tropical atmosphere and continental aerosol 
model. 

3.1.1.1. Detection statistics for point-based field spectra. Fig. 7 shows the 
target detection performance by various target detectors for different 
target materials as a function of AOT. The input reference spectra were 
simulated using the point-based in-situ reflectance spectra. The influ
ence of AOT on the detection performance is evident as the degree of 
detectability amongst the used algorithms varies significantly from one 
another and also differs from material to material of the targets used in 
the experiment. The robustness of detection due to the target spectra 
mismatch between reference and image spectra depends substantially 
on the AOT. As shown in Fig. 7, AOT’s effect is profound after a certain 
threshold, such as after AOT = 2.5 in the case of N1G (Fig. 7(a)). The 
detection rate is least affected by the variation of AOT for the CEM de
tector. ACE, which detects materials based on spectral features (geom
etry-based), missed the target in most cases, even at low AOT values 
(higher visibility). For instance, for targets N2R, N3Y, and N4B, the PFA 
is unusually high (0.35, 0.674, 0.39 at even low values of AOT). More
over, in the cases where MF has detected targets unambiguously (e.g., 
for N1G, C1W), the change in AOT has resulted in a substantial increase 
in the number of FAs. 

3.1.1.2. Detection statistics for pixel-based target spectra. Results of target 
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Fig. 14. Airborne imagery detection results. Illustrated are PFA values when the PD = 75% for the N1G target with simulated TOA target radiance spectra at (a-c) 
AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different standard aerosol models (N-Aero. = No Aerosol, Cont. = Continental, Mar. = Maritime, Urb. =
Urban, Des. = Desert) and atmospheric models (i.e., colored line) using the pixel-based THI target reflectance. 
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detection when spectra from THI were used as the input reference 
spectra are shown in Fig. 8. The input reference spectra were simulated 
from the THI based on reflectance spectra. In general, target detect
ability in airborne imagery using THI-based reference spectra in the 
radiance domain seems to have been substantially influenced by target 
contrast and background components (i.e., we see a variation with all 
materials, even at lower AOT’s). It is evident from Fig. 8 that although 
N1G and N2R are satisfactorily detected by all three algorithms 
(PFA ∼ 10− 2 − 10− 3), we might conclude that the MF and ACE detectors 
failed to detect the N3Y and N4B due to the high number of FAs. The 
failure of ACE and the MF, which are sensitive to the shape of spectral 
signature (Eismann, 2012), can be attributed to a mismatch of the 
simulated spectra and image spectra. In the case where successful 
detection of targets is possible, algorithms are almost impervious to 
change of AOT value up to 2.5. 

3.1.2. Target detection performance as a function of standard aerosol 
models for different standard atmospheric models at various AOT values 

In this section, we analyze the effects of varying the aerosol model (e. 
g., continental, maritime, etc.) within a given atmospheric model (e.g., 
tropical, US62, etc.) at different levels of AOT. Similar to Section 3.1.1, 
we present the results for both point and pixel-based target reference 
sources. 

3.1.2.1. Detection statistics for point-based field spectra. Figs. 9 to 13 
show the target detection performance of different detectors for the N1G 
(Fig. 9), N2R (Fig. 10), C1W (Fig. 11), N3Y (Fig. 12), and N4B (Fig. 13) 
targets. Detection results indicate inherent randomness in the perfor
mance. The performance is heavily penalized when choosing the 
“wrong” atmospheric model compared to a mismatch related to the 

aerosol model. For a lower AOT value (0.48 and 0.89), we see the 
aerosol models’ influence at a given atmospheric model is not signifi
cant. However, at a high AOT value, the stability of detection perfor
mance reduces to a purely random phenomenon. Generally, for most of 
the targets such as N2R, N3Y, and N4B, the performance of the ACE 
detector is poor since the number of false alarms (FAs) for detection at 
PD = 75% is staggeringly high, possibly caused by the sensitivity of the 
ACE detector to the spectral variability introduced in the reference 
target signal by the TOA radiance signal simulation process. MF and 
CEM are least affected by the aerosol model’s variation, albeit different 
atmospheric models yielding different results. A tropical atmospheric 
model produces the best results for the MF detector, whereas CEM 
performs best for the Subarctic winter atmospheric model. We observe 
that the MF yields the best detection results (PFA ∼ 10− 4) for a partic
ular atmospheric model (Tropical), but at the same time is very sensitive 
to changes in an atmospheric model (FAs amplify to 10–100 times). 
Although CEM yields inferior results compared to the MF for some of the 
targets (FAs in the range of 10− 2 ∼ 10− 3 for N1G, C1W), the general 
takeaway is that the results are relatively stable and robust across 
various atmospheric models. This can be attributed to the nature of the 
MF detector, which is more sensitive to spectra shape in contrast to CEM, 
which can discriminate targets based on signal contrast of targets and 
background. 

3.1.2.2. Detection statistics for pixel-based target spectra. We present 
selected results for the targets whose detection rate is either relatively 
the best or worst for brevity. Detection results for the N1G target in the 
THI-based in-situ spectrum show the best detectability among all the 
targets, as shown in Fig. 14, while the N4B target has the lowest 
detection rate. Although the choice of atmospheric model and aerosol 
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model at different AOT values does play a role in the levels of PD and PFA, 
the overall FA rate for N1G remains low regardless of the choice of 
different aerosol and atmospheric models. Among the ACE, CEM, and 
MF detectors, the lowest PFA is obtained using ACE with an order of 
10− 5 − 10− 6 followed by MF with a FA rate at 10− 4. However, with a 
higher degree of AOT level (AOT = 4.94), ACE’s performance takes a 
significant hit and the PFA increases approximately 100 times to a level 
of 10− 4. On the other hand, although CEM’s PFA is highest amongst all 
the detection algorithms for the N1G target, the detection rate remains 
stable for different changes in aerosol and atmospheric models at several 
values of AOT, suggesting the robust nature of the detector. 

In Fig. 15, we see that the performance levels for both ACE and MF 
change from a high detectability rate for N1G (Fig. 13) to complete 
failure for the case of N4B (Fig. 14). As observed for the case of point- 
based in-situ target spectra, spectral detectors like ACE and MF fail to 
detect most of the targets, whereas the CEM delivers a PFA ∼ 10− 3 for a 
tropical atmospheric model and a maritime aerosol model at all AOT 
levels. 

3.2. Spectral target detection from space-borne imagery for simulated 
target spectra induced by AOT and atmospheric model assumption 

3.2.1. Target detection performance under varying AOT conditions 

3.2.1.1. Detection statistics for point-based field spectra. Fig. 16 shows the 
detection performance from space-borne imagery (Sentinel-2) using 
various detectors for all the simulated (i.e., different AOT values) target 
TOA radiance spectra derived from the field-based point reference 
spectra. Unlike the airborne sensor, the detectability of targets seems to 
be substantially influenced by the choice of AOT. The spectral variability 
caused by different AOT values plays an important role in detection. 
While the target detectors such as ACE and MF fail to detect all the 
targets, the CEM detector delivers an overall satisfactory performance 
with FAs in the range of 10− 2 ∼ 10− 4. In particular, detection of N1G by 
CEM shows a highly random nature of detection using TOA radiance 
spectra. In contrast, successful detection of N2R, C1W (albeit high FA 
than N2R), and N3Y indicate the possibility of target detection from a 
space-borne platform. Missed targets such as N4B indicate the limited 
use of the space-borne remote imagery to detect dark materials, i.e., 
materials with low spectral radiant intensity for a point-based target 
reference. 

3.2.1.2. Detection statistics for pixel-based THI spectra. Results of target 
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Fig. 18. Space-borne imagery detection results. Illustrated are PFA values when the PD = 50% for the N3Y target with simulated TOA target radiance spectra at (a-c) 
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detection in the space-borne imagery, when using the pixel-based THI 
spectra as reference target spectra, are shown in Fig. 17. The influence of 
AOT on detection performance is evident for most of the targets. We 
observe a pattern of performance degradation with increasing AOT for 
all the detectors across all the target materials. Unlike the previously 
observed low detection using point-based reference spectra for different 
AOT values, we now observe improved detection results using the pixel- 
based THI reference target spectra with lower FAs. Except for N3Y, all 
the detectors detect the targets with an acceptable PFA (10− 2 ∼ 10− 6) at 
lower values (e.g., in the range 0 – 1) of the AOT, a clear advantage of 
pixel-based THI spectra over point-based spectra. Specifically, for tar
gets N1G and N2R, there is a gradual change in detectability perfor
mance with AOT variation. In the case of N1G, FAs are low 
(
10− 2 ∼ 10− 3) for AOT ≤ 0.5; while for N2R, there is minimal perfor

mance degradation on changing AOT until 2.5, and all the three de
tectors detected both the targets. Detection of N4B by the MF and CEM at 
a low FA (PFA = 0 ∼ 10− 5, although for AOT ≤ 1.5) is encouraging. In 
contrast to the apparent poor detection of a dark target (Section 3.2.1.1), 
while using the point-based in-situ target spectra, detection results from 
the pixel-based THI target reference spectra are comparatively superior. 
This suggests that the acquisition of ground target reference spectra 
using an imaging spectroradiometer is a better alternative over the 
general point-based spectroradiometer, especially in difficult and inac
cessible terrain conditions. 

3.2.2. Target detection performance as a function of standard aerosol 
models for different standard atmospheric models at various AOT values 

3.2.2.1. Detection statistics for point-based field spectra. We present the 
best-case detection performance scenario in Fig. 18 and the worst-case 
scenario, where all the targets are missed, in Fig. 19. As observed in 
Section 1.2.1.1, the detection of targets using the FM approach from a 
space-borne platform for point-based in-situ target reference remains a 
challenge. 

For N3Y, CEM’s performance is satisfactory (Fig. 18(b-h)), and at a 
lower value of AOT (0.48 and 0.89), no significant impact related to 
atmospheric-aerosol models is observed. However, at AOT = 4.94 
(Fig. 18(h)), we observe that, for all the atmospheric profiles, aerosol 
models such as continental, desert, and maritime yield a low number of 
FAs. In contrast, for the urban aerosol model, FAs depend upon the at
mospheric profiles. Since most of the targets are not detectable by ACE 
and MF (high FA rate), the analysis of patterns in the FAs for different 
combinations of atmospheric conditions and aerosol models becomes 
trivial. 

3.2.2.2. Detection statistics for pixel-based THI spectra. We now present 
the best-case scenario related to detection performance, as seen in 
Fig. 20 (observed for N2R), while the worst-case scenario, where the 
detectors miss N3Y, is shown in Fig. 21. A combination of the AOT 
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Fig. 19. Space-borne imagery detection results. Illustrated are PFA values when the PD = 50% for the N4B target with simulated TOA target radiance spectra at (a-c) 
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values, aerosol models, and atmospheric models plays a crucial role in 
determining target detectors’ performance for a pixel-based input 
reference. As observed in Fig. 20, although all the target detectors 
detected N2R at lower AOT values with PFA ∼ 10− 3, the impact of 
aerosol models is evident. For instance, in the case of N2R detection by 
ACE (Fig. 20(a)), the performance degradation between maritime 
aerosol and urban aerosol model is 50%. Also, at AOT = 4.94, detection 
is most difficult by all detectors. Interestingly, for AOT ≤ 0.89, the 
pattern of FA increase and decrease is almost identical for each detector. 
As observed in previous sections, CEM is least affected by choice of 
aerosol models (~5–10% increase of FAs), whereas other spectral de
tectors such as ACE and MF are substantially affected. As observed for 
the case of point-based target reference, detection of N3Y using radiance 
spectra with the FM approach did not yield a better result, especially for 
the ACE and MF detectors. 

3.3. Quantitative spectral similarity analysis of simulated and image 
spectra 

The spectral similarity analysis between the target image spectrum 
from airborne imagery and the respective point-based in-situ reference 
spectrum is presented in Fig. 22 and Fig. 23. The results provided in this 
section are limited to the airborne imagery with AOT = 0.48 and 0.89, as 
sufficient inferences can be drawn about the underlying physical state of 
the atmospheric conditions. These observations and findings can be 

generalized for other cases as well. 
As observed in Fig. 22 and Fig. 23, we can identify the atmospheric 

conditions i.e., probable aerosol models (i.e., colored lines) for a given 
atmospheric profile which would yield successful detection results in 
unknown atmospheric conditions. For example, we find the Tropical and 
Midlatitude Summer atmospheric profile in the present experimental 
setup, with either the Continental or Maritime aerosol model, the best 
suited for the given experimental site. As observed from the results in 
Section 3.1.2, indeed, the Tropical atmospheric profile with the Conti
nental aerosol model does provide better results compared to other 
combinations of models. Furthermore, we find the spectral matching 
different across the targets, suggesting that there is an effect related to 
the spatial neighborhood, which is separate from parameters related to 
the atmosphere. 

4. Discussion 

Onboard methods for problems ranging from classification, anomaly 
detection, unmixing to target detection, etc., are projected to be future 
endeavors in the field of remote sensing. FM approach helps to design an 
onboard computational framework for realizing remote sensing-based 
real-time target detection system. Spectral target detection by its na
ture involves sparsely populated pixels of the imagery, which increases 
the chance of a target miss with even a slight miscalculation of atmo
spheric parameters. Few seminal studies on target detection have shown 
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Fig. 20. Space-borne imagery detection results. Illustrated are PFA values when the PD = 50% for the N2R target with simulated TOA target radiance spectra at (a-c) 
AOT = 0.48, (d-f) AOT = 0.89, and (g-i) AOT = 4.94 for different standard aerosol models (N-Aero. = No Aerosol, Cont. = Continental, Mar. = Maritime, Urb. =
Urban, Des. = Desert) and atmospheric models (i.e., colored line) using the pixel-based THI target spectra. 
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the FM approach as a potential solution for a computationally efficient 
framework (Ientilucci and Bajorski, 2010; Acito et al., 2015), although 
the effect of atmospheric variables on detection performance has not 
been taken into account. In this paper, we have presented the FM 
approach to account for atmosphere-induced target uncertainty and 
variability in multi-platform target detection data, which to the best of 
our knowledge, has not been reported in the literature. We have also 
presented results from a hypothetical perspective where the spectral 
knowledge of a target in one given space–time frame can be transferred 
for detection in a different space–time framework. This involves two 
different sets of atmospheric components, and as a result, a mismatch of 
atmospheric parameters may hamper the detectability of the target. The 
findings in this research could be used for drawing important inferences 
and gain a comprehensive insight into the extent and nature of the at
mosphere influences and impacts of parameter mismatch, which ulti
mately affects target detection performance. 

4.1. Influence of spectral variation caused by varying AOT on detection 
performance 

AOT, which corresponds to columnar visibility, is one of the key 
atmospheric variables that impact the sensor reaching radiance. Several 
studies have established the uncertainty caused by AOT while esti
mating biophysical parameters (Gillingham et al., 2013; Marcello et al., 
2016). Most of the reported studies are focused on objects covering a 

large portion of the image (a class such as vegetation or forest). Since 
AOT is sensitive to wavelength, absorption feature, surface albedo 
(Bhatia et al., 2015), and pixel to pixel differences in AOT levels (Wilson 
et al., 2014), it is natural to expect that these effects would be reflected 
in target detection performance. 

For the most efficient target detector (CEM), examining the detection 
from airborne imagery (i.e., Fig. 7, Section 3.1.1.1) for the point-based 
in-situ target reference, the overall variation in detection performance 
is 2% − 15% across all the targets for the simulated spectra at AOTs ≤
2.5. For spectral detectors, MF and ACE, where the targets can be 
deemed as detected (with lower FAs), the variation in detection range is 
between 10% − 90% for most of the targets. A similar trend is observed 
from space-borne imagery for the point-based in-situ target reference. 
However, for the pixel-based target reference, the detection from 
airborne imagery shows substantial variation with AOT levels (e.g., ACE 
for N1G varied by 200% with AOT ≤ 2.5). The variation is linear with a 
change in AOT levels for detection from space-borne imagery using the 
pixel-based target reference. 

Overall, detection performance and the FAs are found to vary 
moderately across all the targets, albeit with different scales. Results 
indicate that the AOT mismatch effect yields different detection results 
for targets having different surface properties. Although the given tar
gets in this experiment vary predominantly only in the visible portion of 
the EM spectrum, the varying effects of AOT mismatch across the targets 
suggest an involvement related to the background pixels and an AOT 
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influence which seems to impact overall detection performance. 

4.2. Influence of atmospheric model and respective mismatch on target 
detection performance 

Apart from the AOT, the other two critical parameters seen in several 
RTM are the choice of atmospheric and aerosol models. Typically, at
mospheric models in 6S are modeled on the basis of fixed columnar 
profiles, which are pre-computed using standard models such as that by 
Goody and Yung (1995), Malkmus (1967), and McClatchey et al. (1971) 
for estimating gaseous transmittance, columnar water vapor, tempera
ture, pressure, and ozone concentrations as a function of altitude. 
Similarly, aerosol models are formulated based on the models of Lenoble 
(1985), D’Almeida et al. (1991). These models estimate the macroscopic 
properties of EM signal propagation in the atmosphere. For these rea
sons, they are often treated like a “black box” (Bhatia, 2018). However, 
since these global models are widely used in remote sensing for atmo
spheric compensation and represent the atmospheric state in a given 
space–time, we have investigated their impact on target detection. 
Detection results from airborne imagery using the point-based in-situ 
target reference indicate that the overall detection and levels of FAs are 
predominantly determined by the choice of atmospheric profile. A 
mismatch of atmospheric profile can potentially lead to detection fail
ure. We have noticed that for a given atmospheric profile (e.g., Trop
ical), there is an observable pattern related to the aerosol models on the 
number of FAs, which indicates the need for estimation of local aerosol 
models in all automated target detection frameworks. Interestingly, 
spectral target detectors such as ACE and MF have yielded low FAs for a 
tropical atmospheric profile. In contrast, the CEM detector offers a better 
result for the Subarctic winter atmospheric profile. This insinuates that 

the target detection results can be different across various detection 
algorithms for different atmospheric state variables. 

We suggest that a detection framework for applications utilizing the 
FM approach for target detection must be designed keeping in mind the 
nature of the detection algorithm and its sensitivity to atmospheric state 
variables. Target detection in airborne imagery using pixel-based target 
reference spectra indicates that the detection of dark targets (i.e., targets 
with lower reflection intensity) is a challenge and is influenced by the 
choice of atmospheric parameters. On the other hand, although the 
detection is low for space-borne imagery using both the point-based and 
pixel-based target references, the pattern observed in the levels of FAs is 
concurrent with the observations in Section 3.1.2 for the ACE and MF 
target detectors. 

The target detection algorithms used in this work were chosen from 
the perspective of onboard spectral target detection and the FM 
approach. However, the target detection in hyperspectral imagery, 
especially in offline mode, can benefit from using other evolving 
methods such as kernel-based and deep machine learning methods. We 
recommend studies emphasizing this aspect from both the reflectance 
and radiance modes of target detection. 

5. Conclusion 

Spectral target detection is a critical application of hyperspectral 
remote sensing. There have been considerable efforts to develop signal 
processing-based detection algorithms in this field. However, to a lesser 
degree, the underlying physical phenomena have largely been over
looked. The trivialization of the electromagnetic signal propagation 
model, ignoring the subtle atmospheric process, can produce ambiguous 
detection results. This study has attempted the quantitative assessment 
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of hyperspectral target detection from a radiative transfer perspective 
and has extended the FM approach for target detection to a multi- 
platform (airborne - space-borne) target detection setup. Given that 
the FM approach is computationally inexpensive, we recommend the FM 
approach for all kinds of onboard processing methods for detecting non- 
critical targets (i.e., environmental pollution surveillance, infrastructure 
build-up in strategic areas, unauthorized construction in protected forest 
areas, geochemical exploration, mineral prospecting, etc.). From an at
mospheric parameter modeling perspective, spectral target detection is 
susceptible to AOT, atmospheric profile, and aerosol model. AOT is 
found to be the most dominant factor among the parameters considered, 
having substantial implications on the detectability of targets. At a given 
AOT, the choice of atmospheric and aerosol profiles has a bearing on the 
levels of FAs. The wrong choice of atmospheric models can lead to a high 
rate of FAs. The variations in target detection due to AOT can be reduced 
to a moderate degree by choosing an appropriate detection algorithm (e. 
g., CEM for the present application). The validity of the hypothesis that 
targets can be detected by transferring target spectral knowledge from a 
known atmospheric state to an unknown state is case-specific. The lack 
of a priori knowledge on the exact atmospheric condition can limit the 
target detection process. Tackling such problems requires a learning 
approach to model the targets that account for the atmospheric pro
cesses’ induced spectral variability. 

Two significant findings from the research, apart from the atmo
spheric perspective on target detection, are establishing the efficacy of 
the pixel-based in-situ target reference and the potential of detection of 
engineered targets from space-borne platforms. The ground-based im
aging spectroscopy-derived target reference spectra perform well with 
detection from space-borne imagery. The FM approach for space-borne 
imagery produced unambiguous detection results for several targets 

indicating a strong potential for developing automatic satellite-based 
spectral target detection frameworks. We believe that more experi
mental datasets and additional testing at different sites would enhance 
our understanding of the target detection process and its intricate rela
tion to atmospheric influences. 
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