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With the ever-increasing demands of e-commerce,
the need for smarter warehousing is increasing ex-
ponentially. Such warehouses requires industry au-
tomation beyond Industry 4.0. In this work, we use
consumer-grade millimeter-wave (mmWave) equip-
ment to enable fast, and low-cost implementation of
our localization system. However, the consumer-grade
mmWave routers suffer from coarse-grained channel
state information due to cost-effective antenna array
design limiting the accuracy of localization systems.
To address these challenges, we present a Machine
Learning (ML) and Kalman Filter (KF) integrated
localization system (KF-Loc). The ML model learns
the complex wireless features for predicting the static
position of the robot. When in dynamic motion, the
static ML estimates suffer from position mispredic-
tions, resulting in loss of accuracy. To overcome the
loss in accuracy, we design and integrate a KF that
learns the dynamics of the robot motion to pro-
vide highly accurate tracking. Our system achieves
centimeter-level accuracy for the two aisles with
RMSE of 0.35m and 0.37m, respectively. Further,
compared with ML only localization systems, we
achieve a significant reduction in RMSE by 28.5%
and 54.3% within the two aisles.

I. INTRODUCTION

In the recent decade, advances in industrial
automation have gained a lot of attention from
academia and industry. Leading to the evolution
of the fourth industrial revolution, known as In-
dustry 4.0 [1]–[3]. The advances are made in the

computation and the communication aspects of in-
dustrial automation targeting robotics and material
handling. Realizing Industry 4.0 requires the design
of autonomous robots working in coordination to
perform various tasks. One of the preliminary re-
quirements for the robot is to localize itself within
the environment with very high accuracy for coordi-
nation and carrying out tasks. Localization requires
information from various kinds of sensors. Sen-
sors such as LiDAR, vision and wireless are most
commonly used for localization [4]–[7]. Authors in
[8] detailed discussion regarding advanced driver
assistance systems utilizing wireless, radar, and
LiDAR-based hardware and software components
for self-driving vehicles. They present the use of
different consumer sensors for tasks like localiza-
tion, mapping, and navigation. In [9] authors use
deep learning for designing smarter and intelligent
consumer devices and software services.

In recent years, with the maturity of consumer-
grade sensor technology, localization algorithms
are heavily studied. However, reliable localization
is still challenging for accurate and reliable au-
tonomous design. The challenges arise due to the
unpredictable environmental conditions for both
indoor and outdoor applications. Traditional ap-
proaches to wireless localization use triangulation
and trilateration to estimate the position of the
client. Using such an approach for localization
requires accurate knowledge of the wireless channel
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TABLE I
PERFORMANCE COMPARISON WITH DIFFERENT WIRELESS BASED LOCALIZATION TECHNIQUES

Sensor Performance Advantages Disadvantages

GPS Around 10m Low cost sensor NLoS in indoor environment
off-the shelf localization Significant loss in accuracy for indoor application

Camera [4] Mean error of 0.75m Low cost sensor Susceptible to environment changes
High accuracy can be achieved Require more complex localization system design

LiDAR [5] 0.07m to 0.03m RMSE High Accuracy Computationally very expensive
Obstacle avoidance ability High cost sensor

UWB [6] 15cm RMSE Low cost sensor High dependence on sensor placement
Low power consumption Need custom hardware design

model is required. Millimeter-wave channel in an
indoor environment suffers from multi-path propa-
gation [10]. To model the wireless channel, detailed
knowledge of the electromagnetic characteristics
from all scatters is required. Such modeling of
indoor wave propagation at 60 GHz is non-trivial
and involves custom hardware design. For this, the
mmWave equipment used in our approach are the
consumer-grade routers capable of communicating
at 60 GHz frequency. Such consumer hardware
is designed to communicate and provides coarse-
grained channel state information due to cost-
effective antenna array design. We propose a ma-
chine learning and Kalman filter-based indoor local-
ization system to alleviate the challenges associated
with channel modeling and irregular signal strength.
The system learns the mapping between the com-
plex wireless radio features and the distances to
provide dynamic position tracking.

Many data augmentation techniques are heav-
ily employed for machine learning applications
like image classification, object detection, and ob-
ject recognition, where the images in the training
datasets are rotated, and cropped. The augmentation
is performed for two primary reasons: first, to
increase the size of the training dataset without
physically collecting more data, which saves the
data collection time, and second, to increase the
robustness of the ML model for inference on unseen
test data and has shown drastic and significant
improvement in the learning capabilities of neural
networks. Most of the data augmentation techniques
are for image/vision-based datasets [11]. In our

design, the features are the wireless SNR informa-
tion and not image pixels and cannot be used on
wireless features. To improve ML-based localiza-
tion models, we propose a new data augmentation
technique for wireless features. To perform data
augmentation, we synthetically generate another set
of radio map, assuming a large-scale shadow fading
in the 60GHz propagation model [10].

Table I summarizes the localization performance
using different sensor modalities, namely, Global
Positioning System (GPS), LiDAR, and vision.
Simultaneous Localization and Mapping (SLAM)
approaches use information from sensors, and de-
pending on the environment, high accuracy can be
achieved. The LiDAR-based SLAM approach, as
well as vision-based systems, are computationally
costly. The data generated is either a point cloud
of all the distances or video streams from hi-
fidelity cameras respectively [7]. To alleviate these
concerns, high-performance computational devices
such as Graphics Processing Units (GPUs) are
needed on the robot to support the localization.
While custom mmWave wireless equipment could
be used as wireless beacons, designing such hard-
ware at mmWave frequencies is significantly more
challenging and is beyond the scope of this work.
Further, to enable a low barrier to entry of automa-
tion for small-scale and local warehouses without
compromising the system’s accuracy and perfor-
mance, we have introduced the use off-the shelf
mmWave routers. Our approach is designed and
evaluated for a working warehouse. The method-
ology presented can be extended to any indoor
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environment for agent localization utilizing wire-
less features. The exact results may vary, but the
methodology can be adopted across different indoor
environments. Further, we have discussed the net-
work training details and AP arrangements process
in Section III and IV. The evaluation details can be
used to reproduce or re-design the proposed system
for different indoor environments.

The contributions of this work are outlined as
follows:

• We present design of an indoor warehouse
localization system using consumer-grade off-
the-shelf 60 GHz wireless routers. For this, we
use Signal-to-Noise-Ratio (SNR) as a feature
from consumer-grade wireless Access Points
(APs) in ML based localization algorithm.

• We introduce a method to deal with the miss-
ing feature information from the APs during
the training and inference of the ML models,
as consumer-grade APs can lose connectivity
intermittently, which can cause severe perfor-
mance degradation. This approach to imputa-
tion is made by modeling the SNR character-
istics using the collected dataset and further
augmenting it with synthetic data.

• ML models are trained using static data and
cannot learn the robot’s dynamics during
movement. Due to the robot’s motion, the ML
output is susceptible to run-time mispredic-
tions. To overcome these challenges, KF is
designed and integrated with the ML model.
KF learns the motion behavior of the robot
and combines it with the ML position output
to provide highly accurate and smooth run-
time tracking of the robot. With KF integration
overhead, our system still achieves real-time
performance at inference.

II. RELATED WORK

Indoor wireless localization at mmWave frequen-
cies has been a very active research area in literature
and industries recently. One of the major contribut-
ing factors is the transition of various industrial
sectors towards automation, which is regarded as
the next generation of the industrial revolution,
Industry 4.0. This section discusses the recent work
done in indoor wireless localization using mmWave
wireless technology using machine learning and

Fig. 1. Warehouse layout with two aisles for our system
evaluation

filtering approaches.For localization in indoor en-
vironments such as warehouses, wireless sensor-
based approaches are vastly investigated [12]–[15]
and have been the preferred positioning approach
for the indoor environment due to the low cost, easy
deployment, and power efficiency. Wireless local-
ization techniques can be broadly classified into two
technologies. The first technique uses the channel
propagation model to estimate the distance to the
Client using the signal strength information and
then using the known location positions of the APs
and the distances, trilateration is used to predict
the location of the Client. The second technique
estimates the position of the Client by matching
the known signal strength from the APs. This is
done by collecting the signal strength information
at many different locations within the environment
and then using it as a database for matching. This
technique is known as fingerprinting.

In [16], the authors present a moving av-
erage based k-Nearest neighbor approach for
the fingerprint-based localization. The accuracy
achieved by their system is low. Machine learn-
ing and deep learning-based techniques have been
investigated for fingerprint-based localization in
recent years to provide high-accuracy localization
prediction. Authors in [17], [18] designed support
vector regression for localization using the received
signal strength indicator (RSSI) fingerprinting as
input features. In [19] authors proposed to use AP
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Fig. 2. Proposed kalman filter integrated machine learning
architecture

selection and data filtering approach to localize in
an indoor environment. They show the improve-
ment due to EM-based filter and feature matching
using the Bayesian network. Authors in [20] have
presented a deep reinforcement learning framework
for indoor localization using Bluetooth devices. The
idea is to mitigate the data collection step for train-
ing the ML model and use reinforcement learning
algorithms to learn the location predictions. Their
approach shows low accuracy in testing by achiev-
ing a Root Mean Square Error (RMSE) of 12.2m. In
[21] authors have used the same mmWave routers
in an indoor office environment and have shown an
accuracy of 98.8%. Still, only 7 locations are used
for the training and testing in their work, which
is very coarse-grained localization performance.
Further in [21] the task of localization is static as
the robot is not in dynamic motion compared to our
approach.

III. LOCALIZATION ARCHITECTURE

The machine learning predictions are static and
can only provide output independent of time. In
our system, the client is a moving robot inside a
warehouse, illustrated in Fig. 1. Miss-predictions by
ML model can negatively impact system autonomy.
We enhance the localization capability by augment-
ing the ML location prediction with a Kalman
filter to capture the time-dependent dynamics. KF

Fig. 3. Output data from Imputation Unit

uses inputs from various sensors, including the
robot’s state as provided by the odometry from
the robotic platform. In our implementation of KF,
we use the output from the ML prediction model
instead of giving raw sensor output. We provide an
integration where the KF utilizes the static location
estimates from the trained ML model and infers the
robot’s time-dependent state by estimating velocity
components in the 2D cartesian coordinate system.
The system architecture is shown in Fig. 2. This
final time-dependent output is used for the run-
time tracking of the robot. Integrating KF signif-
icantly reduces the ML misprediction penalty that
can result in wrong location estimates. Such miss-
predictions in ML are caused due to obstructions
and fluctuations of wireless signals at the client.
KF-Loc provides highly accurate and robust track-
ing of an agent in a complex warehouse envi-
ronment by utilizing a consumer-grade mmWave
sensor.

A. Data Imputation and Augmentation

Wireless features are Signal-to-Noise Ratio
(SNR) signals from APs as captured by the Client.
The Client, for communication purposes, only se-
lects the AP with the highest signal strength. We en-
able the Client to capture all available SNR signals
by writing in-house firmware modification scripts.
To build the dataset, we collect SNR features within
the two aisles of the warehouse. The ML model
uses the dataset to train network parameters during
training stage. The wireless features are susceptible
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to obstacles and suffer from multipath reflections
which can cause loss of connectivity with the
receiver, which adds to the feature unreliability.
Machine learning models will fail to generalize
if the input features show such behavior. Further,
there can be situations when the SNR signals from
the sectors of APs are missing. The missing sector
information and APs (features) are inconsistent and
can cause the ML model to not generalize with
high robustness for unseen test data, leading to
severe performance degradation. To overcome the
before-mentioned negative impact on performance,
we introduce mean imputation and synthetic data
generation technique as a pre-processing step be-
fore training the ML model.

During mean imputation, missing wireless fea-
tures in the collected dataset are substituted with the
respective mean value at the given location. Fig. 3
illustrates the imputation process where a zero value
indicates the missed feature during data collection
routine. The imputation step substitutes the missing
features by their mean values. Imputation makes the
dataset more consistent for the ML models, as ML
models require input dimensions to be consistent
throughout training and inference.

When considering the mean received SNR, we
consider the log-normal channel model. The prop-
agation model indicates that the log received sig-
nal power will decrease linearly with log distance
and, superimposed, will present a random variation
due to the large-scale shadow fading effect. This
random variation can be modeled as a Gaussian
random variable (when SNR or power are measured
in the log scale of decibels). With fixed background
noise power, the SNR measured in decibels can
therefore be modeled as a linear decrease due to
log-distance plus a random variation that follows a
zero-mean Gaussian distribution. Hence, to create
augmented dataset, we model the mean of SNR
value from an AP j for sector i, µji,k, and standard
deviation σji,k from the collected dataset at location
k. This captures both the channel shadow fading as
well as noise power. In this way, without collecting
another set of training data we artificially create a
new synthetic dataset and reduce the data collec-
tion time which can be fairly significant for large
warehouses.

In this manner, we augment the on-site data

with synthetic data and this enables us to improve
the learning capability of the ML models and the
robustness of the trained models when performing
the test-time inference. In the combined dataset, we
additionally introduce random drop-off of wireless
SNR features by randomly selecting APs and the
number of features to drop off. This is done to
introduce more variability in the training dataset to
capture the random signal fluctuations and scenar-
ios where an AP can lose connection with the Client
due to obstruction in the environment.

x̂k = Fxk−1 +Buk−1 (1)

P̂k = FPk−1F
T +Q (2)

y = zk −Hx̂k (3)

S = HP̂kH
T +R (4)

K = P̂kH
TS−1 (5)

xk = x̂k +Ky (6)

Pk = (1−KH)P̂k (7)

Our training dataset is collected across different
days and working hours. The rational behind col-
lecting data across multiple days and multiple scans
is to capture the random variations that occurs in the
wireless signals across time and space. This routine
makes the training data more feature rich and that
significantly helps the ML models to generalize
with high accuracy to unseen data during the test
time. To test the trained models, another set of
data is collected at same locations and during the
testing, the ML models are fed only this test data
and the model’s output is the predicted location of
the Client.

B. Machine Learning Prediction Model

We train a regression-based ML localization
model. The regression approach uses the outputs
as the 2D coordinates of the robot within the
warehouse. Here, the outputs of the neural network
are continuously valued with two output heads.
Training ML regression model is done by consider-
ing both x and y positions as the GT in the training
dataset. The dataset consists of Xfet number of
input features, where Xfet consists of SNR from
all the sectors. The GT for each training sample is
the known position location at which data collection
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Fig. 4. Warehouse aisle for experimental testbed

is performed. The input dimension of our dataset is
N × Xfet, where N is the number of training data
points. The dimension of GT in the dataset are N
× 2, as for each training sample, we have a position
in two-dimension space on the warehouse floor.

C. Kalman Filter Design

Kalman filter estimates the state of a robot based
on the prediction-update cycle. KF is a linear recur-
sive estimator that minimizes the mean square error
of the estimated parameters. In Kf-Loc, input to the
KF is noisy position prediction from the ML model,
i.e., (x,y) coordinates of the robot. The KF filters
the noisy coordinates to generate more accurate 2D
tracking. At the start, different parameters of KF are
initialized. These parameters include the 60 GHz
sensor’s noise covariance matrix (R), measurement
matrix (H), robot’s state vector (x), state transition
matrix (F), and covariance matrix (P). We assume
the process covariance (Q) to be zero as we perform
a constant velocity-based linear tracking of the
robot.

In the first step, the KF predicts the robot’s state
and error covariance for the next step; this is repre-
sented using (1), (2). B and u represent the control
input matrix and control vector, respectively. Next,
the KF performs the update process where based
on the received measurements, predicted states and
covariance estimates are updated. The update pro-
cess is shown mathematically by (6), (7). During
the prediction stage, the uncertainty of the robot’s
position increases as the agent gains no informa-
tion. While during the update step, the agent gains

Fig. 5. Localization performance for different ML models

information through the sensors’ measurements and
becomes more confident regarding its state.

KF considers the position probability of the robot
to be Gaussian probability density function (PDF)
which can be characterized using the mean and the
standard deviation. The process starts by initializing
the belief of the robot at the start time. For this, we
take in our initial prediction output from the ML
model. Next, using a motion model for the system,
which is a constant velocity model in our design, we
estimate the robot’s location in the next time step.
During the update-cycle of KF, after the time step
has elapsed, we obtain the measurement reading
from the ML model and update our previously
predicted belief of the robot’s state. It is to note
that the robot’s position, i.e., the state and the
measurements, is modeled as Gaussian PDF. The
tuning of R and Q parameters is done based on the
sensor.

IV. EXPERIMENTAL EVALUATION

In this section, we provide a detailed evaluation
of the proposed KF localization framework. For the
experimental testbed, we select a working ware-
house [22] as shown in Fig. 4. Within the two aisles
of the warehouse, we have mounted ten 60 GHz
routers on the ceiling configured as APs. The place-
ment of the routers is done in a zig-zag manner.
On the robot, we place a 60 GHz router configured
as Client. For APs and Client, we have used TP-
Link AD7200 consumer grade routers. For the data
collection, we collect the SNR data from all the
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TABLE II
ML REGRESSION MODEL PERFORMANCE WITH DATA

IMPUTATION

ML Model Configuration Augmentation
With Without

LR Linear (0.51m, 2.6m) (0.58m, 2.84m)
SVR Polynomial Kernel (0.71m, 2.17m) (0.48m, 2.33m)
MLP 200, 200, 200 (0.15m, 0.91m) (0.27m, 1.54m)

available APs. We collect the training data within
the two aisles by moving the robot 0.609m (2-feet)
in the y-dimension of the aisle and keeping the x-
dimension fixed. For both the aisles, we collect two
different training datasets. For test-time evaluation,
another separate held-out dataset consisting of 674
test samples is collected. We assume the robot
moves in one dimension, which is the y-dimension
for localization and tracking. This is realistic in
many practical warehouses for autonomous agents,
where only one agent is allowed to move in a
single-aisle at any given time [3].

A. Machine Learning Model Analysis

The optimized ML localization model is a multi-
layer neural network with three hidden layers con-
sisting of 200 neurons. The ML prediction is a
regression model, where the output is the 2D pre-
diction of the robot’s position inside the warehouse.
For model selection, we train and evaluate differ-
ent regression models of varying complexity. The
three models that we experiment with are Linear
Regression (LR), Multi-Layer Perceptron (MLP),
and Support Vector Regression (SVR). These ML
models are considered as they represent varying
complexity in terms of computation and learning
capability. We train and optimize each regression

TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT ML

MODELS

ML regression Configuration RMSE-X RMSE-Y

LR Linear Model 0.51m 2.60m
SVR Polynomial kernel 0.71m 2.17m
MLP 200, 200, 200 0.15m 0.91m

model individually on the training dataset and use
the held-out test dataset to evaluate the perfor-
mance.

Table II presents the performance comparison
between regression models trained with and without
data augmentation. MLP achieves significant per-
formance improvement, with RMSE of 0.19m and
0.92m in x-and y location prediction, respectively.
This shows 29.3% and 40.25% improvement when
compared with training without data augmentation.
For the other two regression models, LR and SVR,
performance improvement of 8.4% and 6.8% is
achieved in y-dimension, respectively. This im-
provement in performance is seen due to robust
training of the ML models with the synthetic data
augmentation and mean imputation. Overall, the
data augmentation approach that is introduced in
our localization system benefits ML models. In the
subsequent sections, we have used data augmenta-
tion during the training of ML models.

Table III illustrates the performance of the three
ML regression models. It is seen that for LR model
has poor performance with Root Mean Square Error
(RMSE) in y-dimension of 2.6m. The results show
that using a simple and less complex learning
model, the complex behavior of the 60 mmWave
wireless features with distances cannot be learned at
high accuracy and requires more complex learning
models. SVR and MLP, both complex models,
achieves better performance compared to LR. MLP
with three hidden layers and 200 neurons each
achieves significantly higher accuracy with RMSE
of 0.15m and 0.91m in the x and y position,
respectively. Fig. 5 shows the localization error
performance in terms of the Cumulative Distribu-
tion Function (CDF) plot, where three different
regression models are compared. It is seen from
Fig. 5 that MLP also achieves the lowest median
error of 0.26m when compared to the SVR and
LR regression models. Based on these performance
metrics, we have selected the three-layer MLP as
our optimized ML localization model.

The robot only moves in y-dimension within the
aisle, but our ML model predicts both the x- and
y-position of the robot. This is required as the x-
position of the robot will be different for different
aisles, and to differentiate the location of the robot
within the multiple aisles, 2D-position output is
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Fig. 6. Robustness performance of Multi-Loc system with
baseline ML model for regression

required. Next, we will analyze how KF integra-
tion overcomes the fluctuations in predictions and
increases localization accuracy.

B. Robustness with Data Augmentation

This section compares the performance of the
KF-Loc system with ML localization model trained
without data augmentation and KF integration. The
ML model is the same MLP that we use in the
KF-Loc. To evaluate the robustness performance,
we randomly switch off data corresponding to APs,
introducing missing or corrupt wireless signals in
the test dataset, capturing the scenario where APs
can lose connection with Client. Fig 6 illustrates
the performance where the x-axis represents the
number of missing APs, and the y-axis shows the
corresponding RMSE in y-dimension.

Fig. 7. Comparison of y-position between KF-Loc and ML
model in aisle-1

Fig. 8. Comparison of y-position between KF-Loc and ML
model in aisle-2

We see the KF-Loc system maintains low po-
sitioning error compared to the ML-based system
with RMSE of 1.98m and 2.93m, respectively.
The significant decrease in performance for ML-
based systems is due to the low robustness of the
trained model. In comparison, KF-Loc maintains
high tolerance to signal fluctuations due to the
augmentation-based training described in Section
III-A. Data augmentation makes the localization
system highly robust against random fluctuations
and loss of connectivity with the wireless signals.
Such scenarios are common in real-world deploy-
ment using ML based localization systems, and
the ability to generalize with high robustness is a
critical requirement. Such robustness performance
analysis is missing in related state-of-the-art local-
ization models presented in Table IV.

Fig. 9. Comparison of x-position between KF-Loc and ML
model in aisle-1
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TABLE IV
PERFORMANCE COMPARISON WITH DIFFERENT WIRELESS BASED LOCALIZATION TECHNIQUES

Work Wireless Frequency Environment Methodology Performance

Bahl [23] RF-based 2.4 GHz Indoor KNN 2m-3m
Laoudias [24] WiFi 2.4 GHz Indoor ANN Mean error of 3.4m

Yang [25] WiFi 2.4 GHz Indoor WiFi Fingerprinting Mean error of 5.88m
Kanhere [26] mmWave 28 GHz Indoor Fusion of AoA and received power Mean error of 1.86m
Kanhere [26] mmWave 28 GHz Outdoor Fusion of AoA and received power Mean error of 34m
Bielsa [27] mmWave 60 GHz Indoor Particle filter Median error of 1.1m to 1.4m
Wei [28] mmWave 60 GHz Outdoor DoA based WKNN fingerprint Mean error 1.32m

Walaa [29] mmWave 28 GHz Outdoor Different ML models MAE of 3m-33m
Li [30] WiFi 5 GHz Indoor Particle Swarm Optimization Median error 1.5m

Vashist [31] mmWave 60 GHz Indoor MLP fingerprint RMSE 0.84m
Our work mmWave 60 GHz Indoor KF and ML integrated (KF-Loc) RMSE of 0.35m and 0.37m

C. Kalman Filter Integrated Tracking

For KF system design, we define the robot state
as a three-dimension vector defining the position
in 2D Cartesian coordinate frame and its velocity
in the y-dimension. The covariance matrix, P, is a
3x3 matrix initialized with very high uncertainty
for velocity. The measurement matrix, H, is a 2x3
matrix, initialized with 1 for the position, and the
measurement covariance, R, is a 2x2 matrix initial-
ized with values 0.01. The ML prediction output is
integrated with the KF to provide the 2D tracking.
The optimized model designed in section IV-A is
used as the ML model, which is MLP consisting of
three hidden layers with 200 neurons each.

We evaluate the tracking of the robot in two
different aisles of the warehouse. Figs. 7 and 8
show the performance comparison between the KF-

Fig. 10. Error comparison between KF-Loc and ML model in
both the aisles

Loc, in green, and ML model, in red, tracking in
y-position for aisle-1 and aisle-2 respectively. The
GT position is shown in blue for both figures. The
figure shows fluctuations in the position estimates
for the ML model with agent’s motion. These
fluctuations are due to mispredictions by the ML
model. Signal fluctuations due to agent motion
cause mispredictions.

Similarly, Fig. 9 shows the position estimates
of the robot along the x-position within the aisle.
For location estimation, the KF-Loc provides a
smoother localization and tracking performance.
This is achieved as the KF within the KF-Loc sys-
tem can filter and smooth out the raw position pre-
diction from the ML model and capture the robot’s
dynamic motion by estimating its velocity. This is
where the KF provides powerful integration with
the ML model by estimating the robot’s dynamic
state variable, in our case, the velocity, without
explicitly being provided with velocity output from
the robot.

Performance comparison between the KF-Loc
and ML based localization model is made by mea-
suring the Root Mean Square Error (RMSE) of the
robot in both the aisles individually. Figure 10 plots
the robot’s RMSE in y-position for both aisle-1 and
aisle-2. For aisle-1, performance improvement with
28.5% reduction in RMSE error is achieved, and
for aisle-2, we see more significant performance
improvement with 54.3% reduction in RMSE error.
Both the aisles KF-Loc achieve centimeter-level
localization accuracy with RMSE of 0.35m and
0.37m, respectively. KF-Loc reduces the negative
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impact of ML mispredictions by learning the mo-
tion dynamics of the robot.

D. Comparison and Overhead Analysis

In this section, we compare the performance of
KF-Loc with different wireless-based localization
systems. Table IV compares KF-Loc with different
state-of-the-art approaches using millimeter wave
and sub 5GHz features. From Table IV we see
that mmWave approaches show better performance
compared to sub-GHz wireless systems. This is due
to the shorter wavelength of the mmWave results in
a high-resolution radio map. ML models use this
feature-rich radio map and result in more accurate
modeling. Authors in [23]–[25] uses lower 2.4GHz
frequency and provides estimation using K-nearest
neighbor [23], artificial neural network (ANN) [24],
and fingerprinting matching [25] based approaches.
The results presented showed sub-meter level ac-
curacy. As these approaches use relatively sim-
pler models and sub-GHz wireless features, such
systems’ performance is lower than the KF-Loc
localization approach.

Work presented in [26]–[28], [31] utilizes
millimeter-wave frequencies varying from 28GHz
to 60GHz. They achieve meter-level accuracy in lo-
calization. In [26] Angle of Arrival (AoA) approach
is used for position estimation of the client. Such
approaches to localization require precise knowl-
edge of AP placement. Such precise placement is
hard to achieve, and the arrangement directly im-
pacts performance. ML approaches do not require
knowledge of AP location and are more robust to
change in the environment. Authors in [28] utilizes
fingerprint-based approach similar to ours. In [28]
the estimation is performed using weighted K-
nearest neighbor; KNNs are computationally inex-
pensive but suffer from lower performance and are
highly susceptible to noise and signal variations.

Authors in [29] use 28GHz wireless with fin-
gerprinting approach and evaluate 13 different ML
models. They achieve meter-level accuracy in an
outdoor simulation environment. Further, the re-
sults presented are simulation-based. Li [30] uses
5GHz WiFi-based location estimation using Particle
Swarm Optimization (PSO) approach. All men-
tioned approaches do not show and discuss the
impact of missing features or signal loss on the

localization system. Such scenarios are common,
as ML-based methods are data-dependent, and such
signal fluctuations or AP failure can cause the sys-
tem to fail. In our approach, with the introduction
of data imputation and synthetic data for training,
we show the high robustness of the KF-Loc system
under these scenarios.

With the integration of KF, additional timing
overhead is introduced. In our design, the KF con-
sumes a total of 0.64ms for each input processing.
When compared to the run-time performance, the
system does not contribute to significant overhead.
Further, the ML model is an MLP consisting of two
intermediate fully connected layers that do not have
additional computational complexity compared to
deeper CNN architectures. Additionally, the agent
in use comprises a computing system with GPU.
The ML model utilizes the GPU parallelism to
provide a processing rate of 4ms. The total pro-
cessing delay of the KF-Loc is 4.64ms, which
is significantly lower and can easily provide the
required real-time performance. Localization and
ML systems designed for autonomy should have
latency in the range of a few hundred milliseconds
as surveyed by Google, and Mercedes Benz for self-
driving systems [32]. In [32] the evaluated reaction
time is estimated around 0.83s and Kf-Loc latency
is only 4.64ms, which is significantly lower than
desired latency.

V. CONCLUSION

We present the design and implementation of
a robust localization system, KF-Loc for indoor
warehouses using 60 GHz routers. We introduce
the use of the consumer-grade 60 GHz wireless
routers for providing high accuracy localization per-
formance using off-the-shelf mmWave routers. In
our system, complex mmWave features are learned
by a regression-based ML model, providing static
position predictions of the robot. Kalman filter
is designed to improve the ML prediction error
during the robot motion. KF improves the motion
tracking of the robot by removing the fluctuations
due to mispredictions in ML output. ML models are
susceptible to fluctuations in input features causing
severe performance degradation. To address robust-
ness, we present a data imputation and augmenta-
tion for wireless features. Our results show for the
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worst-case AP dropout, KF-Loc achieves 1.4X less
degradation in localization performance. To test the
practicality of our system, we deploy and test our
system within two aisles in a functional warehouse.
KF-Loc achieves centimeter-level accuracy in our
test setup of two aisles with RMSE of 0.35m
and 0.37m, respectively. Further, compared with
the static ML localization system, our proposed
system shows significant performance improvement
by achieving 28.5% and 54.3% improvement in
RMSE error for the two test aisles.
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