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Abstract—With ever-increasing demands of e-commerce the
need for smarter warehousing is increasing exponentially. This
requires industry automation beyond Industry 4.0. In this work,
we use consumer-grade millimeter-wave (mmWave) equipment
to enable fast, and low-cost implementation of our localization
system. However, the consumer-grade mmWave routers suffer
from coarse-grained channel state information due to cost-
effective antenna array design limiting the accuracy of local-
ization systems. To overcome these challenges, we present a
Kalman Filter (KF) and Machine Learning (ML) integrated
localization system (KF-Loc). Where the ML model learns the
complex wireless features for predicting the static position of the
robot. When in dynamic motion, the static ML estimates suffer
from position mispredictions that results in loss of accuracy. To
overcome the loss in accuracy, we design and integrate a KF to
enhance the accuracy of localization for moving robots. The KF
learns the dynamics of the robot’s motion to provide a smooth and
highly accurate localization and tracking. Our system achieves
centimeter-level accuracy for the two warehouse aisles with
RMSE of 0.35m and 0.37m respectively. Further, compared with
ML only localization systems we achieve significant reduction
in RMSE by 28.5% and 54.3% for two different test aisles
respectively.

Index Terms—60GHz, indoor localization, kalman filter, ma-
chine learning.

I. INTRODUCTION

In the recent decade, the advances in industry automation
has gained a lot of attention from academia and industry. This
has led to the evolution of the fourth industrial revolution,
known as Industry 4.0 [1]-[3]. The advances are made in the
computation and the communication aspects of the industry
automation targeting the robotics and material handling. Figure
1 illustrates different technological components required for
such automation. Realizing Industry 4.0 requires the design
of autonomous robots working in coordination to perform
various tasks. One of the preliminary requirements for the
robot is to localize itself within the environment with very high
accuracy for coordination and carrying out tasks. To perform
the localization, information from various kinds of sensors can
be used. Sensors such as LiDAR, vision and wireless are most
commonly used for localization [4]-[7].

In the recent years, with the maturity of consumer-grade
sensor technology, localization algorithms are heavily studied.
However, reliable localization is still challenging for accurate

Fig. 1. Industry 4.0 automation and required technological components

and reliable autonomous design. This is due to the unpre-
dictable environmental conditions for both indoor and outdoor
applications. Table I summarizes the localization performance
using different sensor modalities namely, Global Positioning
System (GPS), LiDAR and vision. Using these sensors, Simul-
taneous Localization and Mapping (SLAM)-based localization
approach can be applied and depending on the environment,
reasonably good accuracy can be achieved. The LiDAR-
based SLAM approach as well as vision-based systems are
computationally very expensive as the data generated is either
a point cloud of all the distances or video streams from hi-
fidelity cameras respectively [7]. To alleviate these concerns,
high performance computational devices such as Graphics Pro-
cessing Units (GPUs) are needed on the robot to support the
localization. While custom mmWave wireless equipment could
be used as application specific wireless beacons but, designing
such hardware at mmWave frequencies is significantly more
challenging and is beyond the scope of this work. Further, to
enable a low barrier to entry of automation for small-scale
and local warehouses without compromising the accuracy and
performance of the system we have introduced the use off the
shelf mmWave routers.

In this work, we propose the use of consumer-grade off-
the shelf 60 GHz wireless router for wireless localization
in an indoor warehouse environment and design a Kalman
Filter (KF) and ML integrated indoor wireless localization
architecture, termed as KF-Loc. The ML model predicts the



TABLE I
PERFORMANCE COMPARISON WITH DIFFERENT WIRELESS BASED LOCALIZATION TECHNIQUES

Sensor Performance Advantages Disadvantages
GPS Around 10m Low cost sensor NLoS in indoor environment
off-the shelf localization Significant loss in accuracy for indoor application
Camera [4] Mean error of 0.75m  Low cost sensor Susceptible to environment changes
High accuracy can be achieved Require more complex localization system design
LiDAR [5] 0.07m to 0.03m RMSE High Accuracy Computationally very expensive
Obstacle avoidance ability High cost sensor
UWB [6] 15cm RMSE Low cost sensor High dependence on sensor placement

Low power consumption

Need custom hardware design

static 2D position of the robot using the wireless features
from 60 GHz millimeter-wave (mmWave) routers using a
multi-layer neural network. The sensor features within the
complex indoor warehouse environment is susceptible to loss
of connection due to shadowing effects and obstruction due to
objects and shelves. This can result in the loss of position
information of the robot, especially when the robot is in
motion. Further, due to robot’s motion the ML output is
susceptible to misprediction. As ML models are trained using
static data and by itself cannot learn the robot’s dynamics
during motion. To overcome these challenges, KF is designed
and integrated with the ML model. KF learns the motion
behavior of the robot and combines it with the ML position
output to provide highly accurate and smooth localization and
run-time tracking of the robot.

II. RELATED WORK

Indoor wireless localization at mmWave frequencies has
been very active research area in literature and industries
recently. One of the major contributing factor is the transition
of various industrial sectors towards automation, which is
regarded as next generation of industrial revolution, Industry
4.0. In this section, we discuss the recent work done in indoor
wireless localization using mmWave wireless technology using
machine learning and filtering approaches. For localization
in indoor environments such as warehouses, wireless sensor
based approaches are vastly investigated [8]-[11] and have
been the preferred positioning approach for indoor environ-
ment due to the low cost, easy deployment and power effi-
ciency. Wireless based localization techniques can be broadly
classified into two technologies. First technique uses the chan-
nel propagation model to estimate the distance to the Client
using the signal strength information and then using the known
location positions of the APs and the distances, trilateration is
used to predict the location of the Client. The second technique
estimates the position of the Client by matching the known
signal strength from the APs. This is done by collecting the
signal strength information at many different locations within
the environment and then using it as a database for matching.
This technique is known as fingerprinting.

In [12], the authors present a moving average based k-
Nearest neighbor approach for the fingerprint based localiza-
tion. The accuracy achieved by their system is low. Machine
learning and deep learning based approaches have been in-
vestigated for fingerprint based localization in recent years to
provide high accuracy localization prediction. Authors in [13],
[14] designed machine learning models like thors in [13], [14]
designed machine learning models like and, support vector
regression and support vector regression for localization using
the received signal strength indicator (RSSI) fingerprinting as
input features. In [15] authors proposed to use AP selection
and data filtering approach to localize in an indoor environ-
ment. They show the improvement due to EM based filter
and feature matching using Bayesian network. Authors in [16]
have presented a deep reinforcement learning based framework
for the indoor localization using Bluetooth devices. The idea is
to mitigate the data collection step for training the ML model
and use reinforcement based learning algorithms to learn the
location predictions. Their approach shows low accuracy in
testing by achieving Root Mean Square Error (RMSE) of
12.2m. In [17] authors have used same mmWave routers as
ours for localization for indoor office environment and have
shown accuracy of around 98.8% but in their work only 7
locations are used for the training and testing which is very
coarse grained localization performance. Further in [17] the
task of localization is static in nature as the robot is not in
dynamic motion compared to our approach.

III. LOCALIZATION ARCHITECTURE

In our proposed architecture, we integrate ML localization
model with the Kalman Filter, KF-Loc, to perform the run-time
localization and tracking for the indoor autonomous robots. As
ML predictions are static in nature and cannot learn the motion
of the robot it makes the localization system less accurate
due to mispredictions. In KF-Loc, the KF learns the dynamic
behavior of the robot and combines it with the ML output in a
prediction-update cycle to provide highly accurate localization
performance. Figure 2 depicts the warehouse layout with the
two aisles where we implement the localization system. Within
the two aisles we have 68 distinct locations at which we
collect the SNR features at the client. We have considered two
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Fig. 2. Warehouse layout with two aisles for our system evaluation

aisles in our design, this is to show the effectiveness of our
localization system to learn the complex features in an indoor
environment at a large scale. The system architecture is shown
in Fig. 3. In our framework, the first step is the training of
a ML model to predict the location of the robot. Next, KF
is designed and the ML prediction output is integrated with
the filter to provide more accurate indoor localization and 2D
tracking. In the subsequent sections the data collection routine,
ML model setup and KF design is discussed in detail.

A. Data Collection Setup

To build the dataset we collect the Signal-to-Noise Ratio
(SNR) features within the two aisles of the warehouse. This
dataset is used by the ML model to train their weights during
the training stage. At each location the Client is programmed
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Fig. 3. Proposed kalman filter integrated machine learning architecture

to scan for the SNR features from all available APs. This
is done by interfacing the 60 GHz router in the client mode
and then interfacing it with a computation unit that is present
on the robot. Next, at each individual location multiple scans
are recorded at the Client. Due to obstruction and shadowing
effects of mmWave routers, at Client we can have missing
sector features and this can cause our model to not generalize
during the training and for unseen test data. To overcome the
missing feature information we perform a mean substitution
of for each missing feature as a pre-processing step before we
train the ML model and this is shown as the data imputation
block in Fig. 3.

Our training dataset is collected across different days and
working hours. The rational behind collecting data across
multiple days and multiple scans is to capture the random
variations that occurs in the wireless signals across time and
space. This routine makes the training data more feature rich
and that significantly helps the ML models to generalize with
high accuracy to unseen data during the test time. To test
the trained models, another set of data is collected at same
locations and during the testing, the ML models are fed only
this test data and the model’s output is the predicted location
of the Client.
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B. Machine Learning Prediction Model

We train a regression-based ML localization model for the
location prediction. The regression approach uses the outputs
as the 2D coordinates of the robot within the warehouse. Here,
the outputs of the neural network are continuous valued with
two output heads. Training of the ML regression model is done
by considering both x and y-dimension positions as the GT
in the training dataset. The dataset consists of X t.; number
of input features, where X.; consists of SNR from all the
sectors. The GT for each training sample is the known position
location at which data collection is performed. Input dimension
of our dataset is N X Xy, where N are the number of
training data points. The dimension of GT in the dataset are
N x 2, as for each training sample we have position in two-
dimension space on the warehouse floor.

C. Kalman Filter Design

Kalman filter estimates the state of a robot based on the
prediction-update cycle. KF is a linear recursive estimator that
minimizes the mean square error of the estimated parameters.
In our design, we use the KF to track the position of the
autonomous robot in a 2D space within an warehouse. The



TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT ML MODELS

ML regression Configuration RMSE-X RMSE-Y
LR Linear Model 0.51m 2.60m
SVR Polynomial kernel 0.71m 2.17m
MLP 200, 200, 200 0.15m 0.91m

input to the KF is the noisy position prediction output from
the ML model i.e. (x,y) coordinates of the robot. The KF
will filter the noisy coordinates to generate more accurate 2D
tracking. First, the KF is initialized by setting up the various
parameters. This includes setup of 60 GHz sensor’s noise
covariance matrix (R) and measurement matrix (H). Also,
the robot’s state vector (x), state transition matrix (F), and
covariance matrix (P) are initialized. We assume the process
covariance (Q) to be zero as we are performing a constant
velocity based linear tracking of the robot.

In the first step, the KF performs the prediction of the
robot’s state and error covariance for the next time step, this
is represented using (1), (2). Where, B and u are the control
input matrix and control vector respectively due to the external
and internal forces. Then in the next step, KF performs the
update process where, based on the received measurements it
updates the previously predicted state and covariance estimate.
This is shown mathematically by (6), (7). It can be inferred
that during the prediction stage, the uncertainty of the robot’s
position increases, as during this step no information is gained.
While, during the update step we gain information through the
measurements received from the sensors and we become more
certain regarding the robot state.

KF considers the position probability of the robot to be
Gaussian probability density function (PDF) which can be
characterized by the mean and the standard deviation. The
process starts by initializing the belief of the robot at the start
time. For this, we take in our initial prediction output from
the ML model. Next, using a motion model for the system,
which is a constant velocity model in our design, we estimate
the location of the robot in the next time step. During the
update-cycle of KF, after the time step has elapsed, we obtain
the measurement reading from the ML model and update
our previously predicted belief of the robot’s state. It is to
note that the belief of the robot’s position i.e. state and the
measurements are modeled as Gaussian PDF. The tuning of R
and Q parameters are done based on the sensor.

IV. EXPERIMENTAL EVALUATION

In this section, we provide detailed evaluation of the
proposed KF localization framework. For the experimental
testbed, we have selected a working warehouse [18] as shown
in Fig. 4. Within the two aisles of the warehouse we have
mounted ten 60 GHz routers on the ceiling configured as APs.
The placement of the routers are done in a zig-zag manner. On
the robot a 60 GHz router configured as Client is placed. For
APs and Client, we have used TP-Link AD7200 routers. For
the data collection routine, we collect the SNR data from all
the available APs. We collect the training data within the two

Fig. 4. Warehouse aisle for experimental testbed

aisles by moving the robot 0.609m (2-feet) in the y-dimension
of the aisle and keeping the x-dimension fixed. For both the
aisles, we collect two different training datasets. For test-time
evaluation, another separate held-out dataset is collected for
the both aisles where total of 674 test samples are used to
evaluate the system performance. In our work, the robot moves
in one dimension within the aisle which in our experiments is
the y-dimension for localization and tracking. This is realistic
in many practical warehouses for autonomous agents, where
only one agent is allowed to move in a single aisle at any
given time and usually unidirectional motion is allowed [3].

A. Machine Learning Model Analysis

The optimized ML localization model is a multi-layer neural
network with three hidden layers consisting of 200 neurons
each. The ML prediction is a regression model, where the
output is the 2D prediction of the robot’s position inside
the warehouse. For model selection, we train and evaluate
different regression models of varying complexity. The three
model that we experiment with are Linear Regression (LR),
Multi-Layer Perceptron (MLP), and Support Vector Regres-
sion (SVR). These ML models are considered as they represent
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Fig. 5. Localization performance for different ML regression models
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Fig. 6. Comparison of y-position between KF-Loc and ML model in aisle-1

the varying complexity in terms of computation and learning
capability. We train and optimize each of the regression model
individually on the training dataset and use the held-out test
dataset to evaluate the performance.

Table II illustrates the performance of the three ML re-
gression models. It is seen that for LR model has poor
performance with Root Mean Square Error (RMSE) in y-
dimension of 2.6m. This shows that using a simple and less
complex learning model, the complex behavior of the 60
mmWave wireless features with distances cannot be learned
at high accuracy and require the need of more complex
learning models. SVR and MLP both more complex models
achieves better performance compared to LR. But, it can be
seen that MLP with three hidden layers and 200 neurons
each, is able to achieve significantly higher accuracy with
RMSE of 0.15m and 0.91m in x and y position respectively.
Fig. 5 shows the localization error performance in terms of
Cumulative Distribution Function (CDF) plot, where three
different regression models are compared. It is seen from the
figure that MLP also achieves the lowest median error of
0.26m when compared to the SVR and LR regression models.
Based on these performance metrics we have selected the
three layer MLP with 200 neurons each as our optimized ML
localization model.

As mention, the robot only moves in y-dimension within
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Fig. 7. Comparison of y-position between KF-Loc and ML model in aisle-2
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Fig. 8. Comparison of x-position between KF-Loc and ML model in aisle-1

the aisle but our ML model still predicts both the x- and y-
position of the robot. This is required as the x-position of the
robot will be different for different aisles and to differentiate
the location of the robot within the multiple aisles 2D-position
output is required. Next, we will analyze and describe how
KF can overcome the fluctuations in position predictions and
increase the accuracy of localization.

B. Kalman Filter Integrated Tracking

In our KF system, we define the robot state as a three-
dimension vector defining the position in 2D Cartesian coordi-
nate frame and its velocity in the y-dimension. The covariance
matrix, P, is a 3x3 matrix initialized with very high uncertainty
for velocity. The measurement matrix, H, is a 2x3 matrix,
initialized with 1 for the position, and the measurement
covariance, R, is a 2x2 matrix initialized with values 0.01. The
ML prediction output is integrated with the KF to provide the
2D tracking. The optimized model designed in section IV-A
is used as the ML model, which is MLP consisting of three
hidden layers with 200 neurons each.

We evaluate the tracking of the robot in two different aisles
of the warehouse. This is to evaluate the performance of
the model in real world environment. Figs. 6 and 7 show
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TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT WIRELESS BASED LOCALIZATION TECHNIQUES

Work Wireless  Frequency  Environment Methodology Performance

Bahl [19] RF-based 2.4 GHz Indoor KNN 2m-3m
Laoudias [20] WiFi 2.4 GHz Indoor ANN Mean error of 3.4m

Yang [21] WiFi 2.4 GHz Indoor WiFi Fingerprinting Mean error of 5.88m
Kanhere [22] mmWave 28 GHz Indoor Fusion of AoA and received power Mean error of 1.86m
Kanhere [22] mmWave 28 GHz Outdoor Fusion of AoA and received power Mean error of 34m
Bielsa [23] mmWave 60 GHz Indoor Particle filter Median error of 1.1m to 1.4m

Wei [24] mmWave 60 GHz Outdoor DoA based WKNN fingerprint Mean error 1.32m
Vashist [25] mmWave 60 GHz Indoor MLP fingerprint RMSE 0.84m

Our work mmWave 60 GHz Indoor KF and ML integrated (KF-Loc) RMSE of 0.35m and 0.37m

the performance comparison between the KF-Loc, in green,
and ML model, in red, tracking in y-position for aisle-1 and
aisle-2 respectively. The GT position is shown in blue for
both the figures. It can be seen that the ML model produces
fluctuations in the position estimates as the robot moves along
the aisles. The fluctuations are due to the mispredictions
by the ML model. These mispredictions are caused by the
signal fluctuations at the Client due to the motion of the
robot, resulting due to shadowing effects of the 60 GHz and
obstructions between the Client and the APs [26]. Similarly,
figs 8 and 9 shows the position estimates of the robot along the
x-position within the aisle. Similar fluctuations are seen due
to the dynamic motion of the robot causing mispredictions
in the position prediction by the ML model. For location
estimation in both the dimensions, KF-Loc system provides
a lot smoother localization and tracking performance. This is
seen as the KF within our KF-Loc system is able to filter and
smooths out the raw position prediction from the ML model
and capture the robot’s dynamic motion by estimating it’s
velocity. This is where the KF provides a powerful integration
with the ML model by estimating the robot’s dynamic state
variable, in our case the velocity, without explicitly being pro-
vided with velocity output from the robot. Thereby, providing
a more robust and reliable run-time motion tracking.

The performance of KF-Loc is also compared with the ML
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Fig. 10. Error comparison between KF-Loc and ML model in both the aisles

model by measuring the Root Mean Square Error (RMSE)
of the robot in both the aisles individually. Figure 10 plots
the robot’s RMSE in y-position for both aisle-1 and aisle-2.
For aisle-1, performance improvement with 28.5% reduction
in RMSE error is achieved and for aisle-2, we see more
significant performance improvement with 54.3% reduction
in RMSE error. Also for both the aisles our system achieves
centimeter level localization accuracy with RMSE of 0.35m
and 0.37m respectively. In KF-Loc, the mispredictions in ML
output position is reduced and improved by the KF by learning
the motion dynamics of the robot, which is velocity in our
case. This significantly reduces the effect of the wrongly
estimated position of the robot by static ML model.

C. Comparison with Different Localization Approaches

In this subsection, we evaluate the performance of our lo-
calization system with different wireless localization method-
ologies. Table III illustrates the performance of our approach
with other wireless based localization approaches. It is seen
that our KF-Loc system achieves better performance in terms
of localization accuracy, with RMSE error of 0.35m and 0.37m
compared to different wireless localization techniques in more
complex indoor environment. Further, it is seen form Table
III that the mmWave based localization techniques achieves
better performance compared to low frequency based WiFi
techniques. This is because of the shorter wavelength of the
60 GHz band enables a higher resolution of the radio-map with
richer features. Our 60 GHz based ML models outperforms the
recent mmWave based localization systems proposed in [22]—
[24] as our system integrates ML and KF predictions together
to provide dynamic tracking and localization of the moving
robot. We also show that compared to simple KNN [19] and
LR based models, more complex ML models like MLPs are
more efficient in learning the complex SNR features.

V. CONCLUSION

We have implemented a robust Kalman filter integrated
machine learning based localization system, KF-Loc, for in-
door warehouse using 60 GHz wireless routers. We introduce
the use of the consumer-grade 60 Ghz wireless routers for
providing high accuracy localization performance using off-
the shelf mmWave routers. In our system, complex mmWave



features are learned by regression based ML model, providing
static position predictions of the robot. To improve the ML
prediction error during the robot motion in run-time a Kalman
filter is designed. The KF improves the motion tracking of the
robot by removing the fluctuations due to mispredictions in
ML output which are result of shadowing and small scale ef-
fects in mmWave channel resulting due to obstructions within
the environment and robot’s motion. The KF learns the robot’s
velocity without getting any explicit motion information from
the robot. In this way, the KF-Loc system is able to provide
run-time localization information compared to standalone ML
based fingerprinting localization systems. To test practicality
of our system we deploy and test our system within two
aisles in a functional warehouse. The training data for the ML
is collected over multiple days within the warehouse and a
separate held-out test data is also collected for testing. Our KF-
Loc system achieves centimeter-level accuracy in our test setup
of two aisles with RMSE of 0.35m and 0.37m respectively.
Further, when compared with static ML only localization
system our proposed system shows significant performance
improvement by achieving 28.5% and 54.3% improvement in
RMSE error for the two test aisles respectively.
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