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This theoretical work initiates contact between two frontier disciplines of physics, namely, atomic
superfluid rotation and cavity optomechanics. It considers an annular Bose-Einstein condensate, which
exhibits dissipationless flow and is a paradigm of rotational quantum physics, inside a cavity excited by
optical fields carrying orbital angular momentum. It provides the first platform that can sense ring Bose-
Einstein condensate rotation with minimal destruction, in situ and in real time, unlike demonstrated
techniques, all of which involve fully destructive measurement. It also shows how light can actively
manipulate rotating matter waves by optomechanically entangling persistent currents. Our work opens up a
novel and useful direction in the sensing and manipulation of atomic superflow.
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Introduction.—Persistent currents in annularly-trapped
atomic superfluids [1,2] offer a highly controllable labo-
ratory for studying phenomena associated with quantum
circulation, such as phase slips [3–6], hysteresis [7], shock
waves [8], matter-wave interferometry [9], gyroscopy
[10–12], atomtronic circuits [13], Josephson physics
[14], time crystals [15], topological excitations [16,17],
and cosmological simulations [18]. All these works rely on
the fact that a Bose-Einstein condensate (BEC) confined on
a ring—unlike one contained in a simply connected trap
[19–21]—can support vortices for macroscopically long
times [1].
Characterizing the rotational state of a ring BEC is

therefore of fundamental importance, with implications for
several areas of physics. In this context it is essential to note
that the information about the angular momentum of a BEC
in a rotational eigenstate is carried in its phase (in the form
of its winding number) and not in its density profile, which
remains uniform around the ring. However, all methods
sensitive to the BEC winding number demonstrated
so far involve absorption imaging of the atoms in the
ring and are therefore fully destructive of the condensate
[1,2,4,9,13,18,22].
On the other hand, minimally destructive detection by

removing a few atoms from the BEC for each measurement
[23], or nondestructive imaging using light far off-
resonance on an atomic transition [24], are only sensitive
to the atomic density and not to the BEC phase. Such
experiments in fact rely on measuring vortex precession in

order to infer the BEC angular momentum. But this
technique cannot be used on an annularly trapped BEC,
as a vortex on a ring does not precess, since its core is
pinned to the ring center. The difficulties enumerated so
far may be overcome, in principle, by nondestructively
tracking superfluid rotation by off-resonantly imaging a
precessing density modulation impressed on the conden-
sate [25], or by continuously monitoring the number of
atoms tunneling out from the ring [26]. Detection of more
involved properties of the rotating condensate, such as
entanglement, however, involves destructive protocols
exclusively [11,27].
In this Letter we propose to solve the outstanding

problems related to the measurement of ring BEC rotation
by exploiting the techniques of cavity optomechanics, a
versatile paradigm for sensing the motion of mechanically
pliable objects based on their interaction with electromag-
netic fields confined to an optical resonator [28–31].
Setup.—The configuration of interest is shown in

Fig. 1(a), [variations on the basic geometry are displayed
in Figs. 1(b) and 1(c), respectively] namely, an atomic (e.g.,
sodium) BEC confined in a toroidal trap [32–36] located at
the center of an optical cavity. The potential experienced by
each atom of mass m in the condensate is [35]

Uðρ; zÞ ¼ 1

2
mωρðρ − RÞ2 þ 1

2
mωzz2; ð1Þ

where ωρ and ωz are the harmonic trapping frequencies
along the radial and axial directions, respectively, and R is
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the radius of the ring trap. In the potential Uðρ; zÞ the
dynamics along the radial (ρÞ, axial (z), and azimuthal (ϕ)
directions decouple. We assume that all atoms remain in the
same quantum state along the radial and axial directions
during dynamical evolution; we focus instead on the
azimuthal motion of the atoms, i.e., along ϕ, which is
not subject to any trapping.
This one-dimensional description is within reach of

state-of-the-art laboratories [36], has been successful in
modeling experiments which include radial degrees of
freedom [4,17,37], and applies if [35]

N <
4

ffiffiffi

π
p

R
3aNa

�

ωρ

ωz

�

1=2
; ð2Þ

whereN and aNa are the number and ground state scattering
length of the sodium atoms in the condensate, respectively.
A superposition of two frequency-degenerate optical

beams derived from the same laser and carrying orbital
angular momentum (OAM) �lℏ is now injected into the
cavity to probe the BEC. Such coherent superpositions
have been experimentally demonstrated to create an angu-
lar lattice inside the cavity about its axis [38]. The beams
are blue detuned far from the ground-to-excited state
atomic transition and therefore interact weakly with the
atoms via the dipole force, with the effect of spontaneous
photon scattering being negligible. Photon decay from the
cavity will be accounted for below.
The azimuthal motion of the BEC is described, in the

frame rotating at the laser drive frequency, by the one-
dimensional Hamiltonian [39,48–50]

H ¼
Z

2π

0

Ψ†ðϕÞ
�

−
ℏ2

2I
d2

dϕ2
þ ℏUocos2ðlϕÞa†a

�

ΨðϕÞdϕ

þ g
2

Z

2π

0

Ψ†ðϕÞΨ†ðϕÞΨðϕÞΨðϕÞdϕ

− ℏΔoa†a − iℏηða − a†Þ; ð3Þ

where the bosonic atomic field operators obey
½ΨðϕÞ;Ψ†ðϕ0Þ� ¼ δðϕ − ϕ0Þ and the photonic operators
follow ½a; a†� ¼ 1. The first term in the bracket on the
first line of Eq. (3) represents the rotational kinetic energy
of the atoms, with I ¼ mR2 the atomic moment of inertia
about the cavity axis. The second term in the bracket
describes the interaction of the atoms with the optical lattice
such that Uo ¼ g2a=Δa, where ga is the strength of the
interaction between one photon and one atom and Δa is the
detuning of the optical frequency from the atomic tran-
sition. The second line of Eq. (3) represents two-body
atomic interactions, with strength g ¼ 2ℏωρaNa=R [35,50].
The first term in the third line of Eq. (3) is the cavity field
energy in the rotating frame of the drive; the detuning Δo
equals the driving field frequency minus the cavity reso-
nance ωo. The last term of Eq. (3) is due to the cavity drive
and η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pinγo=ℏωo

p

where Pin is the optical power and γo
is the cavity linewidth.
The condensate may be set to rotation using a variety of

techniques, including optical stirring [1,2,4], employing
radio-frequency fields [33], or via quenching [17] to impart
a winding number Lp to the BEC. We do not consider
further the details of this process as they are well addressed
in the literature, and as our main task in the present work is
to measure the condensate winding number Lp (and thus
the angular momentum Λ ¼ ℏLp).
Let us now consider the relevant physical processes in

our system. The presence of the optical lattice causes some
atoms in the condensate to coherently Bragg scatter [22]
from their rotational state with winding number Lp to states
with Lp � 2nl, where n ¼ 1; 2; 3;… The linear analog of
such matter-wave scattering from an optical lattice inside a
cavity has already been demonstrated in Ref. [48]. We
assume the dipole potential to be weak (i.e., smaller than
the chemical potential of the rotating condensate), and in
that case the number of atoms scattered is small and only
first order diffraction, Lp → Lp � 2l, is appreciable.
Based on this physical picture, we propose an ansatz for

the atomic field

ΨðϕÞ ¼ eiLpϕ

ffiffiffiffiffiffi

2π
p cp þ

eiðLpþ2lÞϕ
ffiffiffiffiffiffi

2π
p cþ þ eiðLp−2lÞϕ

ffiffiffiffiffiffi

2π
p c−; ð4Þ

where the atomic operators obey ½ci;c†j �¼δij, ði;jÞ¼p;þ;−,
and c†pcp þ c†þcþ þ c†−c− ¼ N. The first term in Eq. (4)
corresponds to the original persistent current and the
remaining two terms are the side modes excited by matter

FIG. 1. BEC with winding number Lp rotating in a ring trap of
radius R, probed by modes carrying OAM� lℏ in a (a) Fabry-
Perot cavity with transmitted field aout (b) hemispherical cavity,
and (c) bottle-shaped optical microresonator. Shaded regions of
the ring correspond to intensity maxima of the optical modes for
l ¼ 2.
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wave diffraction. However, since the number of atoms in the
side modes is small, and the mode with winding number Lp

is macroscopically occupied (i.e., its dynamics are
classical), we posit c†pcp ≃ N and introduce the operators
c ¼ c†pcþ=

ffiffiffiffi

N
p

and d ¼ c†pc−=
ffiffiffiffi

N
p

, where c†p is now a
complex number. Using these relations and Eq. (4) in
Eq. (3) we get, neglecting all constant terms,

H ¼ ℏωcc†cþ ℏωdd†dþ ℏ½GðXc þ XdÞ − Δ̃�a†a
− iℏηða − a†Þ þ ℏg̃ C̃; ð5Þ

whereG ¼ Uo

ffiffiffiffi

N
p

=2
ffiffiffi

2
p

; Δ̃ ¼ Δo −UoN=2, g̃ ¼ g=ð4πℏÞ,
Xc ¼ ðc† þ cÞ= ffiffiffi

2
p

, and Xd ¼ ðd† þ dÞ= ffiffiffi

2
p

.
The side modes are particlelike excitations of the

condensate and therefore their frequencies

ωc ¼
ℏðLp þ 2lÞ2

2I
; ωd ¼

ℏðLp − 2lÞ2
2I

; ð6Þ

are quadratic in the respective angular momenta. A full
Bogoliubov analysis actually yields the side mode frequen-
cies ω0

c;d ¼ ½ωc;dðωc;d þ 4g̃NÞ�1=2 [51]. Here, for simplic-
ity, we ensure ωc;d ≫ 4g̃N such that ω0

c;d ≃ ωc;d. Similar
particlelike excitations were earlier created in a linear
analog of our proposal [48,52]. Finally, ℏg̃ C̃ in Eq. (5)
represents the effect of atomic interactions. In the
Supplemental Material (SM) [39] we have provided the
full expression for C̃ and shown that its presence does not
essentially affect our proposed protocol, even though it
slightly modifies Eqs. (6), for example.
Neglecting ℏg̃ C̃, the right-hand side of Eq. (5) has the

form of the canonical optomechanical Hamiltonian, cou-
pling the displacement (e.g., Xc, Xd) of one or more
mechanical oscillators to the cavity photon number a†a
[28]. The corresponding ðg̃≡ 0Þ equations of motion are

Ẍc þ γm _Xc þ ω2
cXc ¼ −ωcGa†aþ ωcϵc; ð7Þ

Ẍd þ γm _Xd þ ω2
dXd ¼ −ωdGa†aþ ωdϵd; ð8Þ

_a ¼ i½Δ̃ −GðXc þ XdÞ�a −
γo
2
aþ ηþ ffiffiffiffiffi

γo
p

ain; ð9Þ

where dissipation and noise have been introduced
according to the standard quantum Langevin formalism
[28], and the damping of each condensate side mode
(assumed to be the same for simplicity) is γm [1,3]. The
mechanical and optical fluctuations have zero mean
ðhϵci ¼ hϵdi ¼ haini ¼ 0Þ; their correlations will be speci-
fied below.
Rotation sensing.—The basic physics underlying our

proposal for sensing of atomic rotation can be readily
understood from a heuristic discussion of Eqs. (7)–(9).
Neglecting damping and noise, and for weak optical

driving, Eqs. (7) and (8) imply that Xc and Xd oscillate
at frequencies ωc and ωd, respectively. From Eq. (9) we can
then see that the cavity optical field is also modulated at
these two mechanical frequencies. Physically, this modu-
lation is due to the density variations in the BEC caused by
atom scattering from the optical lattice; the effect may also
be understood as a rotational Doppler shift imprinted on the
cavity photons by the circulating atoms [53]. A homodyne
measurement of the cavity output field aout ¼ −ain þ ffiffiffiffiffi

γo
p

a
[28] (also see Fig. 1), should therefore reveal the frequen-
cies ωc;d and thus also the winding number of the
condensate Lp, since in experiments l and I are known
parameters. To confirm quantitatively the above heuristic
arguments, we now present the linear response of our
system taking quantum noise and damping into account.
We start with the steady state solutions to Eqs. (7)–(9),

which are Xc;s ¼ −Gjasj2=ωc; Xd;s ¼ −Gjasj2=ωd, and
as ¼ −η=ðiΔ0 − γo=2Þ, where Δ0 ¼ Δ̃þ G2jasj2Ω and
Ω ¼ ðωc þ ωdÞ=ωcωd. As in conventional optomechanics,
these solutions display bistability, see Fig. 2 [28,48]. We
note that these bistability curves will likely undergo small
shifts due to coherent nonsteady state dynamics [54].
However, our aim is only to establish approximately the
threshold of bistability, and our rotation measurement (and
entanglement generation) will be carried out using param-
eters which keep the system monostable (such that the non-
steady-state dynamics are negligible) and thus orders of
magnitude below the bistable regime.
To obtain the linear response, we write each variable in

Eqs. (7)–(9) as the sum of the steady state value and a small
fluctuation, i.e., M → Ms þ δM for M ¼ Xc; Xd; a, and
obtain the linearized equations as _uðtÞ ¼ FuðtÞ þ vðtÞ,
with uðtÞ¼ ½δXcðtÞ;δYcðtÞ;δXdðtÞ;δYdðtÞ;δQðtÞ;δPðtÞ�T ,
vðtÞ ¼ ½0; ϵcðtÞ; 0; ϵdðtÞ; ffiffiffiffiffi

γo
p

δQinðtÞ; ffiffiffiffiffi

γo
p

δPinðtÞ�T; Yc ¼
iðc† − cÞ= ffiffiffi

2
p

; Yd ¼ iðd† − dÞ= ffiffiffi

2
p

; Q ¼ ða† þ aÞ= ffiffiffi

2
p

;
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FIG. 2. Optomechanical bistability. (a) Intracavity photon num-
ber versus cavity drive power for several effective cavity detunings.
Bistability occurs above Δ̃cr=2π ¼ −1.73 MHz, and between K1

and K2, with the stable branches labeled as 1 and 3. (b) Intracavity
photon number versus effective cavity detuning for various values
of Pin, where bistability appears at Pcr ¼ 17.7 pW. Parameters
used are m ¼ 23 amu, R ¼ 12 μm, N¼104, G=2π ¼ 7.5 kHz,
Lp¼1, l ¼ 10, Δa=2π ¼ 4.7 GHz, ωz=2π ¼ 42 Hz, ωρ=2π¼
42Hz, γm=2π¼0.8Hz, γo=2π ¼ 2 MHz, and ωo=2π ¼ 1015 Hz.

PHYSICAL REVIEW LETTERS 127, 113601 (2021)

113601-3



P ¼ iða† − aÞ= ffiffiffi

2
p

, where the matrix F is provided in the
SM [39]. Fourier transforming, we now consider the
homodyne measurement of the fluctuations δPoutðωÞ in
the cavity output phase quadrature (where ω is the system
response frequency) PoutðωÞ ¼ i½a†outðωÞ − aoutðωÞ�=

ffiffiffi

2
p

.
Choosing without loss of generality the cavity drive

phase such that as is real, using the noise correlations
hainðωÞa†inðω0Þi ¼ 2πδðωþ ω0Þ, and

hϵcðωÞϵcðω0Þi ¼ 2πγmω

ωc

�

1þ coth

�

ℏω
2kBT

��

δðωþ ω0Þ;

ð10Þ

and similarly for the other side mode, and employing
standard methods, we obtain the quadrature noise
spectrum [28]

SðωÞ ¼ SsnðωÞ þ SrpðωÞ þ SthðωÞ: ð11Þ

The first two terms in Eq. (11) describe the shot noise
SsnðωÞ ¼ ½ω2 þ ðγ2o=4Þ�=4γoG2a2s and radiation pressure
contributions SrpðωÞ ¼ γoG2a2sF ðωÞ=ðω2 þ γ2o=4Þ, respec-
tively, with

F ðωÞ ¼ Ω2jωcχcðωÞj2jωdχdðωÞj2½ðω2 − ωcωdÞ2 þ γ2mω
2�;

ð12Þ

where χc;dðωÞ ¼ ðω2
c;d − ω2 − iωγmÞ−1 are the side mode

susceptibilities. The final term in Eq. (11)

SthðωÞ ¼ γmω½ωcjχcðωÞj2 þ ωdjχdðωÞj2� coth
�

ℏω
2kBT

�

;

ð13Þ

is due to mechanical fluctuations.
Plotting SðωÞ as a function of system response frequency

ω [Fig. 3(a)], we clearly see the peaks expected at ωc and
ωd, respectively. We have confirmed that Lp can be
accurately extracted from these peaks, for various sets of
parameters, thus verifying our conjecture that the cavity
transmission indicates atomic rotation. We note from
Eqs. (7) and (8) that for ðLp; lÞ ≠ 0, it follows that
ωc ≠ ωd and therefore the coupling of the side modes to
the cavity photon number is unequal. This observation
underlies the slight peak asymmetry observed in Fig. 3(a).
Plotting SðωÞ as a function of cavity drive power Pin
[Fig. 3(b)] shows the existence of a standard quantum limit
where the combined effect of the shot noise and radiation
pressure noise is minimized for an optimum power PSQL

in , as
in standard cavity optomechanics [28].
We now characterize the rotation measurement sensi-

tivity quantitatively. In the regime of linear response it is
given by [55]

ζ ¼ SðωÞ
∂SðωÞ=∂Λ ×

ffiffiffiffiffiffiffiffiffi

tmeas
p

; ð14Þ

where t−1meas ≃ 8ðasGÞ2=γo is the optomechanical measure-
ment rate in the bad cavity limit ðωc;d ≪ γoÞ applicable to
our system [28]. The change in the sensitivity with various
parameters is shown in Fig. 4. The best sensitivity occurs
near frequencies ωc and ωd, respectively, when the side
mode mechanical susceptibilities peak [Fig. 4(a)]; also, the
sensitivity improves with l as more optical lattice sites
interact with the BEC [Fig. 4(b)].
For realistic parameters we find that the best sensitivity

of our method to the rotation of a BEC with respect to a
stationary laboratory is ∼10−3 Hz=

ffiffiffiffiffiffi

Hz
p

, three orders of
magnitude better than demonstrated thus far [25] and
comparable to theoretical proposals based on fully destruc-
tive measurements [12]. Also, for our parameters, the
optomechanical measurement time tmeas ≃ 60 ms is shorter
than the orbital period of an atom (∼300 ms for Lp ¼ 1)
around the ring trap, much shorter than the duration of a
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FIG. 3. Noise spectrum (a) SðωÞ versus response frequency
ω=2π for Pin ¼ 12.4 fW; the peaks at ωd=2π ¼ 569 Hz and
ωc=2π ¼ 695 Hz correspond to Lp ¼ 1 and l ¼ 10 (b) SðωoptÞ
versus input power Pin, where ωopt=2π ¼ ωc=2π þ 0.3 Hz [see
inset of Fig. 4(a)]. The red (blue) straight dashed line with a
negative (positive) slope indicates optical shot (radiation pres-
sure) noise. Here, Δ0 ¼ 0 and PSQL

in ¼ 4.8 fW. The remaining
parameters are, in addition to T ¼ 20 nK, the same as in Fig. 2.
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FIG. 4. Rotation sensitivity versus (a) response frequency ω=2π
and (b) OAM number l. Here Pin ¼ 12.4 fW and the remaining
parameters are the same as in Fig. 2 except in (b) ω ¼ ωopt.
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persistent current (∼ seconds [2,3], thus making the meas-
urement practically real time), and very much shorter than
the photon scattering time (∼minutes). Finally, we note that
our scheme for measuring Lp only requires a few atoms to
be removed from the original persistent current mode—but
not from the ring trap—into the side modes, and is therefore
minimally destructive [23].
Optomechanical entanglement.—To demonstrate that

our proposed platform enables not only passive measure-
ment but also active manipulation of persistent currents, we
now show that light can optomechanically entangle the two
rotating matter wave side modes. This could be useful for
rotating matter waves to serve as a memory for OAM-
carrying photons, which are of current interest for the large
Hilbert space they offer for quantum information process-
ing purposes [27,56].
We use the experimentally accessible logarithmic

negativity EN ¼ max½0;− lnð2σ−Þ� [28,57], as a measure
of bipartite entanglement, where σ− ¼ 2−1=2½Σ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ2 − 4 detðVsubÞ
p

�1=2, Σ ¼ detAþ detB − 2 detC, and
Vsub ¼ ½ðA;CÞ; ðCT; BÞ� is the covariance matrix provided
in the SM [39]. Entanglement between the two side modes
turns on when optical interaction with the matter waves,
proportional to the number of lattice maxima 2l, becomes
frequent enough [Fig. 5(a)] and degrades with temperature
[Fig. 5(b)]. A systematic study of the effect of atomic
interactions on all results has been provided in the SM [39].
Conclusion.—We have proposed a method of measuring

the rotation of a ring BEC by coupling it to orbital angular
momentum-carrying beams inside an optical cavity. For
realistic parameters this method improves upon currently
available rotation sensitivities by 3 orders of magnitude.
Our proposal also advances the frontier of optomechanics
from the paradigm of light fields interacting with mechani-
cal vibrations to include coherent atomic rotation, thus
opening up the possibility of using rotating matter waves to
realize applications such as storage and retrieval of infor-
mation. Future work will consider more complex many-
body states, vortex nucleation and decay, and gauge fields.
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