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A B S T R A C T

We demonstrate that the conservation of extremal ellipticity for an astigmatic Gaussian beam propagating in
a rotationally invariant medium, for example, an arbitrary sequence of free space propagation and stigmatic
lenses, initially identified by Lo et al. (2017), is a direct consequence of the conservation of orbital angular
momentum (OAM) of the beam. We derive explicit analytical expressions for the first few non-zero moments
of the beam OAM and show that, apart from fundamental constants, they depend only on the beam’s extremal
ellipticity. This unexpected connection uncovers the actual origin of a new propagation invariant, namely
extremal ellipticity, for a broad class of coherent, single-mode Gaussian beams. We expect this principle to
find use in various applications where spot circularity along an extended region of the beam is essential; such
as laser micromachining, imaging, optical trapping, and inertial confinement fusion.
. Introduction

It is now well known that the orbital angular momentum (OAM) of
ight depends on the spatial electric field amplitude and phase structure
f the beam wavefront. Since the original proposal by Allen et al. in
992 [1], OAM has turned out to be an interesting and promising area
f study [2], with applications such as angular momentum transfer [3],
otational Doppler effect [4,5], optical manipulation of microscopic
articles [6] and cold atoms [7], phase contrast microscopy [8], stim-
lated emission depletion microscopy [9], quantum [10] as well as
lassical communication [11], superresolution microscopy [12], and
ptical tweezers [13,14].

Many beams carrying OAM possess a phase singularity and a helical
avefront. However, Padgett [15] has shown that certain Gaussian
eams focused by a cylindrical lens can possess large OAM without
phase singularity. Here, specifically, we address vortex-free general

stigmatic Gaussian beams [16,17], which can carry non-zero OAM.
e limit ourselves to fully coherent, single-mode beams that can be

escribed in an electric field representation. The treatment of more gen-
ral beams like partially coherent Gauss–Schell model beams [17–19],
ortex Hermite–Gaussian beams [20], astigmatic Hermite–Gaussian

∗ Corresponding author.
E-mail address: mxbsps@rit.edu (M. Bhattacharya).

1 Present address: Centre for Quantum Engineering, Research and Education, TCG CREST, Salt Lake, Kolkata 700091, West Bengal, India.

beams with vortex-induced OAM [21], Laguerre-Gaussian beams in-
tegrally transformed from Hermite–Gaussian beams under astigma-
tism influence [22] or incoherent superpositions of several trans-
verse modes, e.g., Siegman’s ‘‘non-Gaussian Gaussian" [23] may be
considered in the future, but is beyond the scope of this work.

This work investigates the physical origin underlying the effect
discovered by Lo et al. [24], which demonstrated that the extremal
ellipticity for simple as well as general astigmatic Gaussian beams is a
conserved quantity upon propagation through free space and stigmatic
lenses and is solely dependent on the input beam parameters astig-
matism 𝐴 and asymmetry 𝛺, defined below. This finding is of great
importance for the specifications of industrial lasers and the design
of laser micromachining systems [25,26]. Here, we further elucidate
that the conservation of extremal ellipticity [24] upon transmission
through a rotationally invariant medium is a fundamental and direct
consequence of the conservation of the OAM of the Gaussian beam.
We extensively show that this is applicable not just under very limited
circumstances, but is a robust phenomenon across rather general classes
of optical beams. Furthermore, the extremal ellipticity gives us a tool
to manipulate the OAM distribution of a broad class of astigmatic
Gaussian beams.
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Fig. 1. The intensity profiles of the 𝑥-𝑧 (blue dot-dashed) and 𝑦-𝑧 (orange solid) cross-
sections for the fundamental mode of a simple astigmatic Gaussian beam propagating
along 𝑧-direction. ‘O’ is the origin of the coordinate system in use. The distance
between the waists is 2𝑠 = 2 mm, the spot half-widths along 𝑥 and 𝑦 directions
are 𝑤0𝑥 = 10

√

2 μm = 14.14 μm and 𝑤0𝑦 = 15
√

2 μm = 21.21 μm, respectively, and
the wavelength (𝜆) is 632.8 nm. Thus, the Rayleigh ranges are 𝑧𝑅𝑥 = 0.993 mm and
𝑅𝑦 = 2.245 mm, the astigmatism 𝐴 = 1.235 and the asymmetry 𝛺 = −0.385.

In Section 2, we provide the background for studying simple astig-
atic paraxial Gaussian beams. Section 3 incorporates the OAM calcu-

ation for the simple astigmatic case. Section 4 deals with higher-order
ermite–Gaussian modes for simple astigmatic Gaussian beams. In Sec-

ion 5, we briefly describe some properties of general astigmatic beams
nd show the analytical form of the first moment of OAM. Section 6 in-
estigates the first moment of OAM for higher-order Hermite–Gaussian
odes of general astigmatic Gaussian beams. Conclusions are supplied

n Section 7. Further details on the common definition of astigmatic
aussian beams as well as calculations of higher order OAM moments
re provided in the appendix.

. Simple astigmatic coherent Gaussian beam: fundamental mode

Following Siegman [27], we consider an electromagnetic field
(𝑥, 𝑦, 𝑧) propagating in free space according to the Helmholtz equa-

ion,
(

∇2 + 𝑘2
)

𝐸(𝑥, 𝑦, 𝑧) = 0 , which in the paraxial approximation
𝑧-axis being the direction of propagation) reduces to

𝜕2

𝜕𝑥2
𝑢 + 𝜕

𝜕𝑦2
𝑢 − 2𝑖𝑘 𝜕

𝜕𝑧
𝑢 = 0 , (1)

here we have used 𝐸(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧)𝑒−𝑖𝑘𝑧, with 𝑢(𝑥, 𝑦, 𝑧) being the
ode function describing the transverse beam profile, and 𝑘 is the
avenumber (𝑘 = 2𝜋∕𝜆). Here, we consider Gaussian beams, which
re exact solutions of the paraxial Helmholtz equation [Eq. (1)].

.1. Mode function

The mode function of a simple astigmatic Gaussian beam in the
undamental mode is generally written as [27]

(𝑥, 𝑦, 𝑧) =

√

2
𝜋𝑤𝑥𝑤𝑦

exp

[

−𝑖 𝑘
2

(

𝑥2

𝑞𝑥
+
𝑦2

𝑞𝑦

)

+ 𝑖
(𝜓0𝑥 + 𝜓0𝑦

2

)

]

, (2)

here [28,29]

𝑥 = 𝑧 − 𝑠 + 𝑖𝑧𝑅𝑥 and 𝑞𝑦 = 𝑧 + 𝑠 + 𝑖𝑧𝑅𝑦 , (3)

re the complex beam parameters with 𝑧𝑅𝑥 = 𝑘𝑤2
0𝑥∕2 and 𝑧𝑅𝑦 = 𝑘𝑤2

0𝑦∕2
eing the Rayleigh ranges, 𝑠 being the half-distance between the 𝑥- and
- beam waists and 𝑤0𝑥 and 𝑤0𝑦 being the beam waist half-widths (see
ig. 1). Furthermore, 𝑤𝑥 and 𝑤𝑦 are the spot half-widths (see Fig. 2)
efining the boundary at which the irradiance drops to 1∕𝑒2 of the peak
rradiance at any given propagation distance and 𝜓 , 𝜓 are the Gouy
0𝑥 0𝑦

2

hases. The complex beam parameters can be decomposed into their
eal and imaginary components as 𝑞−1𝑥,𝑦 = 𝑅−1

𝑥,𝑦−𝑖 (𝑘𝑤
2
𝑥,𝑦∕2)

−1, where 𝑅𝑥,𝑦
are the wavefront radii of curvature, turning the above mode function
into

𝑢(𝑥, 𝑦, 𝑧) =

√

2
𝜋𝑤𝑥𝑤𝑦

exp

[

−

(

𝑥2

𝑤2
𝑥
+
𝑦2

𝑤2
𝑦

)

− 𝑖 𝑘
2

(

𝑥2

𝑅𝑥
+
𝑦2

𝑅𝑦

)

+ 𝑖
(𝜓0𝑥 + 𝜓0𝑦

2

)

]

.

(4)

The explicit forms of beam parameters are detailed in Eq. (A.1). In an
ideal – also called stigmatic – Gaussian beam, the two beam parameters
and Gouy phases are identical, i.e., 𝑞𝑥 = 𝑞𝑦, 𝑤𝑥 = 𝑤𝑦, 𝑅𝑥 = 𝑅𝑦, and
𝜓0𝑥 = 𝜓0𝑦, making the beam possess a circularly symmetric Gaussian
spot irradiance distribution and a spherical wavefront. When 𝑞𝑥 ≠ 𝑞𝑦,
the beam becomes an astigmatic Gaussian beam with elliptical Gaussian
spot irradiance distribution and ellipsoidal (or hyperboloidal) wave-
front. Astigmatism is divided into two classes: (i) simple astigmatism
(Fig. 2), where the axes of the ellipses of constant intensity and constant
phase are aligned, and (ii) general astigmatism (Fig. 6), where they are
no longer aligned.

To stay consistent with [24], we further define the relative astig-
matic beam waist separation 𝐴 between the locations of the waists in
the 𝑥 and 𝑦 directions [Eq. (A.2)] (referred to as Astigmatism going
forward) and the Rayleigh range asymmetry 𝛺 (referred to simply as
Asymmetry), defined by the normalized difference in the spot half-
widths squared at the waist [Eq. (A.3)]. Also note that 𝑧𝑅𝑥 , 𝑧𝑅𝑦 ,
and 𝑠 are the three basic, 𝑧-independent parameters of an astigmatic,
berration free, single mode Gaussian beam. In this paper, the calcula-
ional results will typically be presented either in terms of these three
arameters or their normalized counterparts 𝐴 and 𝛺.

2.2. Ellipticity: simple astigmatic beam

The ellipticity 𝜖0(𝑧), which ranges from −1 < 𝜖0(𝑧) < +1, is defined
as [24]

𝜖0(𝑧) =
𝑤2
𝑥(𝑧) −𝑤

2
𝑦(𝑧)

𝑤2
𝑥(𝑧) +𝑤2

𝑦(𝑧)
. (5)

The ‘‘0’’ subscript is used to differentiate the ellipticity of this simple
astigmatic beam from that of a general astigmatic beam (used in other
sections). Note that 𝑤𝑥(𝑧) and 𝑤𝑦(𝑧) are the 𝑧-dependent spot half-

idths expressed in Eq. (A.1), rather than the spot half-widths at the
aists as in Eq. (A.3). Thus, the ellipticity varies with 𝑧 as one might
xpect. By differentiating the ellipticity with respect to 𝑧, the extremal
alue of the ellipticity was found by Lo et al. [24] to be

2
0ext

= 𝐴2 + 4𝛺2

𝐴2 + 4
=

4𝑠2 + (𝑧𝑅𝑥 − 𝑧𝑅𝑦 )
2

4𝑠2 + (𝑧𝑅𝑥 + 𝑧𝑅𝑦 )
2
, (6)

hich occurs at

ext =
( 𝑧𝑅𝑥 + 𝑧𝑅𝑦

2

)

4𝛺 ±
√

(4 + 𝐴2)(𝐴2 + 4𝛺2)
2𝐴

. (7)

This property is important because it has been proven by Lo et al. [24]
that when a simple astigmatic Gaussian beam propagates through a
stigmatic lens (with equal 𝑥- and 𝑦-optical power), the extremal elliptic-
ity is conserved, i.e., despite having different astigmatism and asymmetry
from the incident beam, the beam after the lens has the same extremal
ellipticity as the incident beam. This has very practical implications for
the specifications of industrial lasers and the design of laser micro-
machining systems, where a certain minimal beam roundness is often
required to ensure robust process windows [25,26]. Our paper provides
an explanation for this phenomenon by relating the constancy of the
extremal ellipticity to the conservation of OAM of the beam.
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Fig. 2. The modulation of the intensity profile for a simple astigmatic Gaussian beam with 𝜆 = 1μm, 𝑤0𝑥 = 0.1 mm, 𝑤0𝑦 = 0.15 mm, 𝑥- and 𝑦- beam waists at propagation
istances -200 mm and -160 mm, respectively (before the lens), propagating through a symmetric lens with focal length 𝑓 = 250 mm placed at the origin (𝑧 = 0). The variation
f beam widths (𝑤𝑥(𝑦)) both in the 𝑥- (dashed blue) and 𝑦- (dash-dotted magenta) directions and the resultant ellipticity 𝜖0(𝑧) (solid olive) are shown along the propagation axes.
ollowing the extremal ellipticity curve, we show corresponding beam cross-sections at different propagation distances, namely at positions of extremal ellipticity (extr. ellip.) and
ero ellipticity (where the beam spot is round). The astigmatism (beam waists difference) and asymmetry (distance between beam waists) before and after (apostrophed) the lens
ave also been shown.
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. OAM-moments: simple astigmatic Gaussian beam in the funda-
ental mode

It is well-known that light has angular momentum, which can be
xpressed, in the case of paraxial beams, as the sum of spin angular
omentum due to its polarization and OAM due to its spatial electric

ield amplitude and phase profile [1,30]. The expectation value of the
AM per photon is found by using the quantum mechanical angular
omentum operator 𝐿𝑧 = −𝑖ℏ (𝑥𝜕∕𝜕𝑦 − 𝑦𝜕∕𝜕𝑥) and the mode function
(𝑥, 𝑦, 𝑧) [1,31,32]

𝐿𝑧⟩ = ∫

∞

−∞ ∫

∞

−∞
𝑢∗(𝑥, 𝑦, 𝑧)𝐿𝑧𝑢(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 , (8)

here 𝑢(𝑥, 𝑦, 𝑧) is given by Eq. (4). The unit of ⟨𝐿𝑧⟩ is the unit of ℏ,
.e. kg ⋅ m2∕s. Eq. (8) evaluates to ⟨𝐿𝑧⟩ = 0 for all 𝑢(𝑥, 𝑦, 𝑧) given by
q. (4) because the integrand is an odd function in both 𝑥 and 𝑦.

It is important to note here that ⟨𝐿𝑧⟩ = 0 cannot be interpreted
n our quantum formalism to imply that ‘the beam has no angular
omentum’ or that the ‘angular momentum of the beam is zero’. In

his formalism, a beam can only be said to have no angular momentum
hen it is an eigenstate of angular momentum with eigenvalue zero.
owever, it can be readily established that the beam under consid-
ration is not an eigenstate of angular momentum (i.e. applying 𝐿𝑧𝑢
oes not yield an eigenvalue times 𝑢); it is in fact a linear combination
f an infinite number of angular momentum eigenstates. Therefore,
he outcomes of possible angular momentum measurements follow a
istribution; and only the average of that distribution is zero (i.e. ⟨𝐿𝑧⟩ =
). As we will see next, other moments of the distribution need not
anish. However, they are constant, since the beam propagates through
rotationally invariant medium, and the whole angular momentum

istribution, and therefore each moment, remains conserved.
The expectation value for the second moment of the 𝑧-orbital angu-

ar momentum per photon is given by

𝐿2
𝑧⟩ = ∫

∞

−∞ ∫

∞

−∞
𝑢∗(𝑥, 𝑦, 𝑧)𝐿2

𝑧𝑢(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 , (9)

nd, with the mode function [Eq. (4)], evaluates to

𝐿2
𝑧⟩ = ℏ2

[

𝑤2
𝑥𝑤

2
𝑦𝑘

2

16

(

1
𝑅𝑦

− 1
𝑅𝑥

)2
+ 1

4

(

𝑤𝑥
𝑤𝑦

−
𝑤𝑦
𝑤𝑥

)2
]

. (10)

The first contribution to ⟨𝐿2
𝑧⟩ is due to the difference in wavefront

curvatures, while the second one is due to the difference in the spot
half-widths. Both terms vary with 𝑧, as shown in Fig. 3. However,
their sum must necessarily be constant, as can indeed be seen by using
Eqs. (A.1)–(A.3) in Eq. (10), which gives

⟨𝐿2
𝑧⟩ = ℏ2

[

𝑠2 +
(𝑧𝑅𝑥 − 𝑧𝑅𝑦 )

2 ]

= ℏ2 𝐴
2 + 4𝛺2

2
. (11)
𝑧𝑅𝑥𝑧𝑅𝑦 4𝑧𝑅𝑥𝑧𝑅𝑦 4(1 −𝛺 )

3

For an ideal Gaussian beam (𝑠 = 0, 𝑧𝑅𝑥 = 𝑧𝑅𝑦 ), we note that Eq. (11)
reduces to ⟨𝐿2

𝑧⟩ = 0. Importantly, Eq. (11) can be shown to be related
to the extremal ellipticity 𝜖0ext defined in Eq. (6), i.e.

⟨𝐿2
𝑧⟩ = ℏ2

⎛

⎜

⎜

⎝

𝜖20ext
1 − 𝜖20ext

⎞

⎟

⎟

⎠

, (12)

from which we can see that, apart from the fundamental constant ℏ, the
second moment of OAM is fully determined by the extremal ellipticity
of the beam. Since ⟨𝐿2

𝑧⟩ is conserved upon propagation through a rota-
tionally symmetric optical systems, so is 𝜖0ext . We emphasize that this
connection is neither physically nor mathematically obvious, and that
therefore Eq. (12) is a nontrivial result. Higher moments of OAM, also
sole functions of the extremal ellipticity, are presented in Appendix B.1.

4. Simple astigmatic coherent Gaussian beam: higher order modes

In this section, we will consider higher-order Hermite–Gaussian
modes of a simple astigmatic beam, whose mode function is given
by [27–29,31]

𝑢𝑚𝑛(𝑥, 𝑦, 𝑧) =

(

1
𝜋𝑤𝑥𝑤𝑦2𝑚+𝑛−1𝑚!𝑛!

)1∕2

𝐻𝑚

(
√

2𝑥
𝑤𝑥

)

𝐻𝑛

(
√

2𝑦
𝑤𝑦

)

× exp

[

−𝑖 𝑘
2

(

𝑥2

𝑞𝑥
+
𝑦2

𝑞𝑦

)

+ 𝑖
2

(

(2𝑚 + 1)𝜓0𝑥 + (2𝑛 + 1)𝜓0𝑦

)]

.

(13)

These modes are known to have ⟨𝐿𝑧⟩ = 0 just like the fundamental
ode [1]. However, similar to the fundamental mode, the expectation

alue for the square of the OAM can be non-zero for higher order
ermite–Gaussian modes. Applying the same method as in Eq. (9) to

ind ⟨𝐿2
𝑧𝑚𝑛

⟩ for a given mode 𝑢𝑚𝑛(𝑥, 𝑦, 𝑧) returns an expression in terms
f ⟨𝐿2

𝑧00
⟩ of the fundamental mode described in Eq. (10),

𝐿2
𝑧𝑚𝑛

⟩ = (2𝑚 + 1) (2𝑛 + 1)
(

⟨𝐿2
𝑧00

⟩ + ℏ2

2

)

− ℏ2

2
, (14)

where it can be confirmed that ⟨𝐿2
𝑧00

⟩ = ⟨𝐿2
𝑧⟩ from Eq. (10) when

= 𝑛 = 0. Finally, using Eq. (12),

𝐿2
𝑧𝑚𝑛

⟩ = (2𝑚 + 1) (2𝑛 + 1) ℏ2

2

⎛

⎜

⎜

⎝

1 + 𝜖20ext
1 − 𝜖20ext

⎞

⎟

⎟

⎠

− ℏ2

2
. (15)

Hence the first non-zero moment, i.e., the second moment of OAM
of higher-order Hermite–Gaussian modes is conserved and depends
on the beam’s extremal ellipticity, which is therefore also conserved.
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Fig. 4. Three dimensional beam width evolution of a general astigmatic beam with
2𝑠 = 2 mm, 𝑤0𝑥 = 10

√

2 μm = 14.14 μm, 𝑤0𝑦 = 15
√

2 μm = 21.21 μm, 𝜆 = 632.8 nm
nd 𝛼 = 0.1 rad. The boundary of the beam is where the intensity drops to 1∕𝑒2 of its

maximum value on the propagation axis. The cross-section of the beam at 𝑧 = −1.8 mm,
hich is investigated next in Fig. 5, is highlighted in green.

he experimental technique for finding the spot half-widths for a
ermite–Gaussian beam has been discussed in [33].

. General astigmatic Gaussian beam: fundamental mode

When the simple astigmatic Gaussian beam as described by Eq. (2) is
otated by a 𝑧-independent angle 𝜙 about the 𝑧-axis, it remains a valid
olution of the paraxial wave equation (1). When 𝜙 is real, this only
ignifies a real rotation of the coordinate system, where the field pattern
emains unaffected. However, when the angle of rotation is imaginary,
.e., 𝜙 = 𝑖𝛼, where 𝛼 is a constant of propagation, the beam profile
hanges. This new type of beam is defined as a general astigmatic beam,
hich can be generated from a simple astigmatic beam by rotating its
avefront relative to its beam spot along the 𝑥𝑦 plane so that they are
o longer aligned.

.1. Mode function

We will treat 𝛼 as a basic, 𝑧-independent parameter to present
he calculations for general astigmatic beams. The mode function of
4

a general astigmatic beam can be written as [16]

𝑢(𝑥, 𝑦, 𝑧) =

√

2
𝜋𝑤𝜉𝑤𝜂

exp

[

−
𝜉2𝑤
𝑤2
𝜉

−
𝜂2𝑤
𝑤2
𝜂
− 𝑖𝑘

𝜉2𝑅
2𝑅𝜉

−𝑖𝑘
𝜂2𝑅
2𝑅𝜂

+ 𝑖
(𝜓𝑥 + 𝜓𝑦

2

)

]

,

(16)

here (𝜉𝑤, 𝜂𝑤) and (𝜉𝑅, 𝜂𝑅) are coordinate systems rotated at angles
𝑤 and 𝜙𝑅, respectively, from the original (𝑥, 𝑦) coordinate system
see Fig. 5). The angles 𝜙𝑤 and 𝜙𝑅 will be shown to be 𝑧-dependent
nd different from each other, indicating that the ellipses of constant
ntensity and the ellipses of constant phase change their orientation
long the 𝑧-axis (see Fig. 6) instead of remaining constant and aligned
ike in the case of the simple astigmatic beam discussed in previous
ections of this paper. The beam parameters 𝑤𝜉 , 𝑤𝜂 are the spot half-
idths and 𝑅𝜉 , 𝑅𝜂 are the radii of curvature of the wavefront given
y [16]

1
𝑤2
𝜉,𝜂

= 𝑘
4

(

𝜔𝑥 + 𝜔𝑦 ±
√

(𝜔𝑥 − 𝜔𝑦)2 cosh
2 2𝛼 + (𝜌𝑥 − 𝜌𝑦)2 sinh

2 2𝛼
)

,

1
𝑅𝜉,𝜂

= 1
2

(

𝜌𝑥 + 𝜌𝑦 ±
√

(𝜌𝑥 − 𝜌𝑦)2 cosh
2 2𝛼 + (𝜔𝑥 − 𝜔𝑦)2 sinh

2 2𝛼
)

,

(17)

respectively. In the literature, for a general astigmatic Gaussian beam,
𝜌𝑥,𝑦 = 𝑅−1

𝑥,𝑦 = (𝑧 ∓ 𝑠)∕[(𝑧 ∓ 𝑠)2 + 𝑧2𝑅𝑥 ,𝑅𝑦 ] and 𝜔𝑥,𝑦 = (𝑘𝑤2
𝑥,𝑦∕2)

−1 =
(𝑧𝑅𝑥 ,𝑅𝑦 )∕[(𝑧 ∓ 𝑠)2 + 𝑧2𝑅𝑥 ,𝑅𝑦 ] are conventionally used to explicitly ex-
press the real and imaginary parts, respectively, of the 𝑞 parameters,
i.e., 𝑞−1𝑥,𝑦 = 𝜌𝑥,𝑦 − 𝑖𝜔𝑥,𝑦, and we will follow that convention. Using these
notations, the angles of orientation of the ellipses of constant intensity
and constant phase can be written as [16]

tan 2𝜙𝑤 =
𝜌𝑥 − 𝜌𝑦
𝜔𝑥 − 𝜔𝑦

tanh 2𝛼 ,

tan 2𝜙𝑅 = −
𝜔𝑥 − 𝜔𝑦
𝜌𝑥 − 𝜌𝑦

tanh 2𝛼 . (18)

and the difference 𝛥𝜙 = 𝜙𝑤 − 𝜙𝑅 is given by [16]

tan 2𝛥𝜙 = − sinh 2𝛼 cosh 2𝛼
( 𝜌𝑥 − 𝜌𝑦
𝜔𝑥 − 𝜔𝑦

+
𝜔𝑥 − 𝜔𝑦
𝜌𝑥 − 𝜌𝑦

)

. (19)

5.2. Ellipticity: general astigmatic beam

Following the simple astigmatic case [Eq. (5)] we can write the
ellipticity of each rotating ellipse of constant intensity as [24]

𝜖𝛼(𝑧) =
𝑤2
𝜉 −𝑤

2
𝜂

𝑤2
𝜉 +𝑤

2
𝜂
. (20)

Using Eq. (17), we find that extremal ellipticity occurs at 𝑧 = 𝑧ext
[Eq. (7)] of the corresponding simple astigmatic Gaussian beam sharing
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Fig. 5. Example of an ellipse of constant intensity (red solid) and an ellipse of constant
phase (blue dotted) demonstrating their orientation with their respective coordinate
systems (𝜉𝑤 , 𝜂𝑤) and (𝜉𝑅 , 𝜂𝑅) for the cross-section at 𝑧 = −1.8 mm of the general
stigmatic Gaussian beam shown in Fig. 4 [16]. In the figure, 𝑥-𝑦 is the original
oordinate system and the angle of orientation 𝜙𝑤 of the ellipses of constant intensity
s taking a positive value while 𝜙𝑅 of the ellipses of constant phase is taking a negative
alue.

he same initial parameters 𝑠, 𝑧𝑅𝑥 , 𝑧𝑅𝑦 and takes the form

ext = 𝜖0ext cosh 2𝛼 . (21)

he constraints on 𝛼 can be found in Appendix C.
The expectation value for orbital angular momentum of a general

stigmatic beam in the fundamental mode can now be found from the
ntegral

𝐿𝑧𝛼 ⟩ = ∫

∞

−∞ ∫

∞

−∞
𝑢(𝑥, 𝑦, 𝑧)∗𝐿𝑧𝛼 𝑢(𝑥, 𝑦, 𝑧) 𝑑𝜉𝑤 𝑑𝜂𝑤 , (22)

here 𝐿𝑧𝛼 = −𝑖ℏ(𝜉𝑤𝜕∕𝜕𝜂𝑤 − 𝜂𝑤𝜕∕𝜕𝜉𝑤). We find,

𝐿𝑧𝛼 ⟩ =
ℏ𝑘 (𝑤2

𝜉 −𝑤
2
𝜂)

(

1 − 1
)

sin 2𝛥𝜙 . (23)

8 𝑅𝜉 𝑅𝜂

5

his result has been confirmed previously [34–36]. The parameters
n Eq. (23) are still 𝑧-dependent. Applying Eq. (17) and (19), how-
ver, demonstrates that the mean OAM is indeed constant throughout
ropagation,

𝐿𝑧𝛼 ⟩ = ℏ
sinh 2𝛼 cosh 2𝛼 (𝐴2 + 4𝛺2)
4 − 4𝛺2 cosh2 𝛼 − 𝐴2 sinh2 2𝛼

, (24)

Finally, by using Eq. (21), we can write, simply,

⟨𝐿𝑧𝛼 ⟩ = ℏ

(

𝜖2ext
1 − 𝜖2ext

)

tanh 2𝛼 . (25)

Higher moments of OAM, also sole functions of the extremal ellipticity,
are presented in Appendix B.2.

6. General astigmatic Gaussian beam: higher order modes

In this section, we will extend the general astigmatic Gaussian beam
to its higher-order Hermite–Gaussian modes, whose mode function at
the cross-section where extremal ellipticity occurs is given by [see
Appendix D]

𝑢𝑚𝑛(𝑥, 𝑦, 𝑧ext ) =

√

1
𝜋𝑤𝜉 (𝑧ext )𝑤𝜂(𝑧ext )2𝑚+𝑛−1𝑚!𝑛!

𝐻𝑚

(
√

2𝑥
𝑤𝜉 (𝑧ext )

)

𝐻𝑛

(
√

2𝑦
𝑤𝜂(𝑧ext )

)

× exp

[

− 𝑥2

𝑤2
𝜉 (𝑧ext )

−
𝑦2

𝑤2
𝜂(𝑧ext )

− 𝑖𝑘
(𝑥 − 𝑦)2

4𝑅𝜉 (𝑧ext )
− 𝑖𝑘

(𝑥 + 𝑦)2

4𝑅𝜂(𝑧ext )

]

.

(26)

For this mode function, we find

⟨𝐿𝑧𝛼𝑚𝑛 ⟩ = (𝑛 + 𝑚 + 1)⟨𝐿𝑧𝛼00 ⟩ + (𝑚 − 𝑛)⟨𝐿𝑧𝛼00 ⟩
𝑤2
𝜉 (𝑧ext ) +𝑤

2
𝜂(𝑧ext )

𝑤2
𝜉 (𝑧ext ) −𝑤

2
𝜂(𝑧ext )

, (27)

where ⟨𝐿𝑧𝛼00 ⟩ = ⟨𝐿𝑧𝛼 ⟩ is the known OAM of a general astigmatic beam
in the fundamental mode [Eq. (24)]. Using Eq. (25) now gives

⟨𝐿𝑧𝛼𝑚𝑛 ⟩ = ℏ

[

(𝑛 + 𝑚 + 1)𝜖2ext + (𝑚 − 𝑛)𝜖ext
1 − 𝜖2ext

]

tanh 2𝛼 . (28)

Therefore, we have directly related the extremal ellipticity of the
fundamental as well as higher-order modes of a general astigmatic
Gaussian beam to the first moment of OAM, which is conserved upon
propagation through a stigmatic lens.

7. Conclusion

Our paper provides a fundamental explanation for the observed
constancy of the extremal ellipticity [24] by relating it to the con-
servation of the OAM distribution of the beam, allaying concerns that
Fig. 6. The evolution of the intensity profile for a general astigmatic Gaussian beam with the same parameters as the simple astigmatic beam (detailed in Fig. 2) and at the
imaginary rotation angle 𝛼 = 0.1 rad propagating through a symmetric lens placed at 𝑧 = 0 mm with focal length 𝑓 = 250 mm. The beam-width variation [both 𝑤𝜉 (dashed blue)
and 𝑤𝜂 (dot-dashed magenta)] and the resultant ellipticity modulation (solid olive) are shown along the propagation axis. Since the 𝜉𝑤- and 𝜂𝑤-axes are always rotating, it is no
longer meaningful to keep track of the sign of ellipticity, hence its absolute value (∣ 𝜖𝛼 (𝑧) ∣) is plotted instead. The beam profile is aligned with the 𝑥- and 𝑦-axes at extremal
llipticity (extr. ellip.), but is generally rotated at an angle elsewhere, such as at positions of least ellipticity (least ellip.), i.e., smallest absolute ellipticity, as displayed in the
igure.
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this is accidental or only applicable under very limited circumstances.
On the one hand this represents a practical advance in beam shaping
and control because while rarely expounded in the scientific literature,
beam quality and beam roundness in particular, are of great importance
in many precision industrial laser processes and substantial optical
design efforts are undertaken to ensure sufficiently well controlled
optical performance. On the other hand, connecting the extremal el-
lipticity to as fundamental a concept as orbital angular momentum
and demonstrating the effective equivalence of the two not only for
single astigmatic Gaussian beams, but general astigmatic, and even
general astigmatic Hermite–Gaussian beams raises the question if and
how this insight may be extendable to even more general cases, be it the
inclusion of higher order aberrations, partially coherent Gauss–Schell
model beams or even incoherent superpositions of several transverse
modes. Finally, control of extremal ellipticity allows us to shape the
beam OAM distribution itself. We expect our results to be relevant to
fields where the measurement and management of beam ellipticities
play a crucial role such as laser micromachining, imaging, optical
trapping, and inertial confinement fusion.
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Appendix A. Simple astigmatic coherent Gaussian beam

The beam parameters in the mode function of simple astigmatic
Gaussian beam [Eq. (4)] have the following forms [28,29]

𝑤𝑥,𝑦 = 𝑤0𝑥,0𝑦

√

√

√

√1 +
(𝑧 ∓ 𝑠)2

𝑧2𝑅𝑥 ,𝑅𝑦
,

𝑅𝑥,𝑦 = 𝑧 ∓ 𝑠 +
𝑧2𝑅𝑥 ,𝑅𝑦
𝑧 ∓ 𝑠

,

0𝑥,0𝑦 = tan−1
(

𝑧 ∓ 𝑠
𝑧𝑅𝑥 ,𝑅𝑦

)

, (A.1)

The astigmatism 𝐴 is defined as

= 2𝑠
1
2 (𝑧𝑅𝑥 + 𝑧𝑅𝑦 )

= 4𝑠
𝑧𝑅𝑥 + 𝑧𝑅𝑦

. (A.2)

Without loss of generality, we will choose 𝑠 to be positive and 𝐴 thus
varies in the range 0 < 𝐴 <∞. Following [24], the Asymmetry 𝛺 takes
the form

𝛺 =
𝑤2

0𝑥 −𝑤
2
0𝑦

𝑤2
0𝑥 +𝑤

2
0𝑦

=
𝑧𝑅𝑥 − 𝑧𝑅𝑦
𝑧𝑅𝑥 + 𝑧𝑅𝑦

. (A.3)

It is z-independent and varies as −1 < 𝛺 < +1.

Appendix B. Astigmatic Gaussian beams — higher order moments

The 𝑝th order moment of OAM can be found by evaluating the
integral

⟨𝐿𝑝𝑧⟩ = ∫

∞

−∞ ∫

∞

−∞
𝑢∗(𝑥, 𝑦, 𝑧)𝐿𝑝𝑧𝑢(𝑥, 𝑦, 𝑧) 𝑑𝜉 𝑑𝜂 , (B.1)
6

B.1. OAM moments: Simple astigmatic beam in the fundamental mode

The expectation value of any odd-order moments of OAM of a
simple astigmatic beam will evaluate to zero. But for even orders, the
expectation value of the OAM-moment will be non-zero. For example,

⟨𝐿4
𝑧⟩ = 4ℏ2⟨𝐿2

𝑧⟩ + 9⟨𝐿2
𝑧⟩

2 . (B.2)

By using Eq. (12), ⟨𝐿4
𝑧⟩ can be directly related to the extremal ellipticity

𝜖0ext .

B.2. OAM moments: General astigmatic beam in the fundamental mode

The second moment is given by

⟨𝐿2
𝑧𝛼
⟩ =

2ℏ⟨𝐿𝑧𝛼 ⟩
tanh(4𝛼)

+ 3⟨𝐿𝑧𝛼 ⟩
2 , (B.3)

where ⟨𝐿𝑧𝛼 ⟩ is given in Eq. (23). Using Eq. (25), we get

⟨𝐿2
𝑧𝛼
⟩ = ℏ2(1 + tanh2 2𝛼)

(

𝜖2ext
1 − 𝜖2ext

)

+ 3ℏ2 tanh2 2𝛼
𝜖4ext

(

1 − 𝜖2ext
)2

. (B.4)

The third moment is given by

⟨𝐿3
𝑧𝛼
⟩ = −2ℏ2⟨𝐿𝑧𝛼 ⟩ +

9ℏ(1 + tanh2 2𝛼)⟨𝐿𝑧𝛼 ⟩
2

tanh 2𝛼
+ 15⟨𝐿𝑧𝛼 ⟩

3, (B.5)

and by relating to Eq. (25), can be expressed in terms of 𝜖ext and 𝛼.

ppendix C. Relationship of 𝜶 and extremal ellipticity of general
stigmatic beam

Arnaud et al. [16] had found that the range of allowed 𝛼 values such
hat the mode function in Eq. (16) can be normalized is given by

osh2(2𝛼) ≤
4𝑠2 + (𝑧𝑅𝑥 + 𝑧𝑅𝑦 )

2

4𝑠2 + (𝑧𝑅𝑥 − 𝑧𝑅𝑦 )
2
. (C.1)

We have found that this condition can be written very compactly as

cosh2 2𝛼 ≤ 1
𝜖20ext

= 𝐴2 + 4
𝐴2 + 4𝛺2

. (C.2)

consequence of Eq. (C.2) is that for a given 𝜖0ext , there is a maximum
allowed value of 𝛼 to maintain this inequality.

Appendix D. Mode function of higher-order general astigmatic
Gaussian beam

We choose to generate higher-order Hermite–Gaussian modes for a
general astigmatic beam at a convenient location on the 𝑧 axis [34],
namely the positive sign solution of 𝑧 = 𝑧ext from Eq. (7) for sake of
simplicity since 𝜙𝑤 = 0 and 𝜙𝑅 = 𝜋∕4 (see Section 5.2). The mode
function for the fundamental mode of a general astigmatic beam at 𝑧ext
is written as

𝑢(𝑥, 𝑦, 𝑧ext ) =

√

2
𝜋𝑤𝜉 (𝑧ext )𝑤𝜂(𝑧ext )

exp

[

− 𝑥2

𝑤2
𝜉 (𝑧ext )

−
𝑦2

𝑤2
𝜂(𝑧ext )

−𝑖𝑘
(𝑥 − 𝑦)2

4𝑅𝜉 (𝑧ext )
− 𝑖𝑘

(𝑥 + 𝑦)2

4𝑅𝜂(𝑧ext )

]

.

(D.1)

Here, we have suppressed the Gouy phase since it is purely a function
of 𝑧 while we are concerned with the transformation of the (𝑥, 𝑦)-
ependent parts. Eq. (D.1) can be expressed more compactly using the
eam parameter matrix 𝑄(𝑧) as [34]

(𝑥, 𝑦, 𝑧ext ) =

√

2
𝜋𝑤𝜉 (𝑧ext )𝑤𝜂(𝑧ext )

exp
[

−1
2
𝑅†𝑄(𝑧ext )𝑅

]

, (D.2)

where 𝑄(𝑧ext ) = 𝑄0(𝑧ext ) + 𝑖𝑄1(𝑧ext ) and

𝑄0(𝑧ext ) = 2

[

1∕𝑤2
𝜉 (𝑧ext ) 0

2

]

, (D.3)

0 1∕𝑤𝜂(𝑧ext )



D.H. Le, A. Pal, A. Qadeer et al. Optics Communications 503 (2022) 127465

g

𝑄1(𝑧ext ) =
𝑘
2

[

1∕𝑅𝜉 (𝑧ext ) + 1∕𝑅𝜂(𝑧ext ) 1∕𝑅𝜂(𝑧ext ) − 1∕𝑅𝜉 (𝑧ext )

1∕𝑅𝜂(𝑧ext ) − 1∕𝑅𝜉 (𝑧ext ) 1∕𝑅𝜉 (𝑧ext ) + 1∕𝑅𝜂(𝑧ext )

]

. (D.4)

Defining the raising operators at any position 𝑧 on the propagation axis
as [34]

𝐴†(𝑧) = 1
√

2
𝛽∗(𝑧)(𝑄∗(𝑧)𝑅 + 𝑖𝑃 ), (D.5)

where 𝐴†(𝑧) = [𝑎†𝑥(𝑧) 𝑎
†
𝑦(𝑧)]𝑇 , 𝑅 = [𝑥 𝑦]𝑇 , and 𝑃 = [𝑃𝑥 𝑃𝑦]𝑇 are the

vectors of the raising operators, position, and momentum, respectively,
and 𝛽(𝑧) is a 2 × 2 matrix determining which higher-order modes are
enerated. It has to satisfy 𝛽†(𝑧)𝛽(𝑧) = 𝑄−1

0 (𝑧). At 𝑧 = 𝑧ext , we choose

𝛽(𝑧ext ) =
1
√

2

[

𝑤𝜉 (𝑧ext ) 0

0 𝑤𝜂(𝑧ext )

]

. (D.6)

to generate Hermite–Gaussian modes along the 𝑥 and 𝑦 axes. By eval-
uating Eq. (D.5) at 𝑧 = 𝑧ext , we obtain the raising operators

𝑎†𝑥(𝑧ext ) =
𝑤𝜉 (𝑧ext )

2

[

𝑥

(

2
𝑤2
𝜉 (𝑧ext )

− 𝑖𝑘
2𝑅𝜉 (𝑧ext )

− 𝑖𝑘
2𝑅𝜂(𝑧ext )

)

− 𝜕
𝜕𝑥

−
𝑖𝑘𝑦
2

(

1
𝑅𝜂(𝑧ext )

− 1
𝑅𝜉 (𝑧ext )

) ]

,

𝑎†𝑦(𝑧ext ) =
𝑤𝜂(𝑧ext )

2

[

𝑦

(

2
𝑤2
𝜂(𝑧ext )

− 𝑖𝑘
2𝑅𝜉 (𝑧ext )

− 𝑖𝑘
2𝑅𝜂(𝑧ext )

)

− 𝜕
𝜕𝑦

− 𝑖𝑘𝑥
2

(

1
𝑅𝜂(𝑧ext )

− 1
𝑅𝜉 (𝑧ext )

) ]

.

(D.7)

The (𝑚, 𝑛) higher-order Hermite–Gaussian modes of a general astigmatic
beam aligned with the (𝑥, 𝑦) coordinate system can then be generated
from a general astigmatic beam in the fundamental mode at 𝑧 = 𝑧ext by
applying the raising operators as [34]

𝑢𝑚,𝑛(𝑥, 𝑦, 𝑧ext ) = [𝑎†𝑥(𝑧ext )]
𝑚[𝑎†𝑦(𝑧ext )]

𝑛𝑢(𝑥, 𝑦, 𝑧ext ) . (D.8)

This procedure yields the mode function of Eq. (26).
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