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Gravity-driven instability of a thin liquid film underneath a soft solid
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The gravity-driven instability of a thin liquid film located underneath a soft solid material is considered.
The equations and boundary conditions governing the solid deformation are systematically converted from a
Lagrangian representation to an Eulerian representation, which is the natural framework for describing the liquid
motion. This systematic conversion reveals that the continuity-of-velocity boundary condition at the liquid-solid
interface is more complicated than has previously been assumed, even in the small-strain limit. We then make
clear the conditions under which the commonly used simplified version of this boundary condition is valid. The
small-strain approximation, lubrication theory, and linear stability analysis are applied to derive an expression
for the growth rate of small-amplitude perturbations. Asymptotic analysis reveals that the coupling between the
liquid and solid manifests itself as a lower effective liquid-air interfacial tension that leads to larger instability
growth rates. Although this suggests that it is more difficult to maintain a stable liquid coating underneath a soft
solid, the effect is expected to be weak for cases of practical interest.
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I. INTRODUCTION

One very challenging class of problems in interfacial fluid
mechanics concerns the flow of liquids near deformable solid
boundaries. In addition to the strong nonlinearity introduced
by the presence of a deformable interface, care must be
taken to properly couple the motion of the liquid—typically
described from an Eulerian perspective—with that of the
solid—typically described from a Lagrangian perspective.

The present paper has two objectives. The first is to present a
systematic derivation of the governing equations and boundary
conditions that describe the liquid-solid interface. In doing
so, we will begin with a Lagrangian description of the solid
motion and carefully convert it to an Eulerian description. We
will show that even when the displacement gradients are small
(the small-strain limit), the continuity-of-velocity boundary
condition at the liquid-solid interface is more complicated
than has previously been assumed. Our systematic conversion
allows us to make clear the conditions under which the
commonly used simplified version of this boundary condition
is valid.

The second objective of this paper is to study the gravity-
driven instability of a thin liquid film underneath a deformable,
or soft, solid layer. Although the case where the solid is rigid
has been well studied [1], the influence of solid deformability
appears not to have been worked out and is of fundamental
interest. This problem is also of practical interest since the
liquid film may represent a coating and one would like to know
whether solid deformability enhances or delays its instability.

In Sec. II we derive the governing equations and boundary
conditions with a focus on the small-strain limit and obtain
further simplifications through application of the lubrication
approximation. A linear stability analysis is described in
Sec. III, with results presented in Sec. IV. Finally, conclusions
are given in Sec. V.

II. GOVERNING EQUATIONS

We consider a system consisting of an incompressible
Newtonian liquid layer lying underneath an incompressible,
impermeable, and deformable viscoelastic solid (Fig. 1), which
we refer to as a gel. The gel is fixed to a rigid substrate that
is horizontal and the liquid layer is in contact with passive
air. We focus on two-dimensional disturbances with respect
to x and z, where x denotes the horizontal coordinate and z

denotes the coordinate normal to the rigid substrate; the system
is assumed invariant in the y direction, which is oriented out of
the plane of Fig. 1. The interfaces are initially flat such that the
liquid is in the region 0 � z � R, and the gel is in the region
−HR � z � 0, where H is a constant.

A. Liquid motion

An Eulerian perspective is used to describe the motion of
the liquid. The liquid motion is thus governed by

ρ�

(
∂v�

∂t
+ v� · ∇v�

)
= ∇ · T� + ρ�gk, (1)

∇ · v� = 0, (2)

where ρ� is the density of the liquid, v� is the velocity vector
of the liquid, T� is the stress tensor of the liquid, and g is the
gravitational acceleration. The operator ∇ = i ∂/∂x + k ∂/∂z,
where i and k denote the unit vectors in the x and z directions,
respectively. The liquid is modeled as Newtonian so the total
stress tensor is given by

T� = −p�I + η�[∇v� + (∇v�)T ], (3)

where the pressure is denoted by p�, I is the identity tensor,
η� is the liquid viscosity, and the superscript T denotes
transpose. At the liquid-air interface z = f �(x,t), we impose a
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FIG. 1. Coordinate system for liquid film lying underneath a
deformable solid.

zero-shear-stress condition and set the normal-stress difference
across the interface equal to the surface tension, denoted by
σa , times the mean curvature of the interface. In addition, the
kinematic condition is applied at this interface.

B. Gel motion

The stress and strain in a solid are most naturally described
from a Lagrangian perspective, as the strain invoked is
determined via reference to the undeformed locations in the
body. However, the motion of the liquid is more naturally
described in Eulerian form, where the motion of arbitrary
material bodies of finite volume can be tracked in time,
and the formalism of continuum mechanics can be applied
to generate differential field equations. In addition, the gel
and liquid motions are intimately coupled. In what follows,
we present general governing equations for the gel from an
Eulerian perspective. The stress in the gel is indeed described
in Lagrangian form but then is carefully mapped back to the
Eulerian perspective so it can be inserted into the Eulerian
equations of motion.

From an Eulerian perspective, the motion of the gel is
governed by statements of momentum and mass conservation:

ρs

(
∂vs

∂t
+ vs · ∇vs

)
= ∇ · Ts + ρsgk (4)

∇ · vs = 0, (5)

where ρs , vs, and Ts are, respectively, the density, velocity
vector, and stress tensor of the gel. For simplicity, we adopt
the approach of much prior literature and model the gel as a
Kelvin-Voigt material. In the Kelvin-Voigt model, the motion
of the gel is represented by a viscous damper and purely
elastic spring connected in parallel. Although here we focus
on the small-strain limit, we note that accounting for the effect
of finite strains in the gel requires the use of a nonlinear
constitutive model [2,3]. Before considering the expression
for Ts, we review mass conservation from a Lagrangian
perspective; this is necessary to carefully establish conditions
under which the approximations used in the analysis to follow
are valid.

The dynamics of the gel are characterized by the Lagrangian
displacement field, the measurement of the deviation of the
gel from its unstressed state. The reference configuration
has independent spatial variables (X,Z) to characterize the
material particles in the reference (i.e., unstressed) frame. In
the deformed state, the (x,z) spatial location of the material

z

x

P4
P1

P2

P3

FIG. 2. Stretched gel element in the xz plane.

particle (X,Z) in the reference configuration is given by:

x = X + Ux(X,Z,t) and z = Z + Uz(X,Z,t), (6)

where Ux and Uz are the Lagrangian displacements in the x

and z directions, respectively.
In the limit of small strains, the incompressibility of the gel

is expressed as

∂Ux

∂X
+ ∂Uz

∂Z
= 0. (7)

To see why, we consider an initially rectangular gel element in
the XZ plane with sides �X and �Z aligned with and parallel
to the X and Z axes, respectively. The area of this element is
thus �X�Z. This rectangle is deformed in the xz plane as
shown in Fig. 2 and has vertices given by

P1 = [X + Ux(X,Z,t),Z + Uz(X,Z,t)],

P2 = [X + Ux(X,Z + �Z,t),Z + �Z + Uz(X,Z + �Z,t)],

P3 = [X + �X + Ux(X + �X,Z + �Z,t),Z + �Z

+Uz(X + �X,Z + �Z,t)],

P4 = [X + �X + Ux(X + �X,Z,t),Z + Uz(X + �X,Z,t)].

The area of the stretched gel element is given by the cross
product |P1P2 × P1P4|. If we ignore quadratic terms in the
Taylor expansions as �X and �Z approach zero, then the
vectors P1P2 and P1P4 are given by

P1P2 =
[
�Z

∂Ux

∂Z
(X,Z,t),�Z + �Z

∂Uz

∂Z
(X,Z,t)

]
,

P1P4 =
[
�X + �X

∂Ux

∂Z
(X,Z,t),�X

∂Uz

∂X
(X,Z,t)

]
.

Thus, the area of the stretched gel element is∣∣∣∣∂Ux

∂Z

∂Uz

∂X
−

(
1 + ∂Uz

∂Z

)(
1 + ∂Ux

∂X

)∣∣∣∣�X�Z. (8)

For the volume to be conserved, i.e., the area remains as
�X�Z, we must have

∂Uz

∂Z
+ ∂Ux

∂X
+ ∂Uz

∂Z

∂Ux

∂X
− ∂Ux

∂Z

∂Uz

∂X
= 0. (9)

In this work, we will apply the small-strain approximation,
which requires that the displacement gradients be small
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compared to unity, i.e.,

∂Ux

∂X
� 1,

∂Ux

∂Z
� 1,

∂Uz

∂X
� 1, and

∂Uz

∂Z
� 1. (10)

This approximation allows products of displacement gradients
to be dropped from Eq. (9) and leads to the incompressibility
condition stated in Eq. (7).

The strain, or measure of deformation in the gel, is given by
spatial derivatives of the displacement fields. The components
of the resulting Lagrangian infinitesimal-strain tensor L are
given by

Lxx = ∂Ux

∂X
, Lxz = Lzx = 1

2

(
∂Ux

∂Z
+ ∂Uz

∂X

)
, and

Lzz = ∂Uz

∂Z
. (11)

To characterize the purely elastic behavior, we use Hooke’s law
for an isotropic medium. For an incompressible solid subject
to Eq. (7), the elastic stress TE is

TE = 2EL, (12)

where E is the shear modulus.
The velocity field in the gel is the time derivative of the

position Eq. (6):

dx

dt
= ∂Ux

∂t
and

dz

dt
= ∂Uz

∂t
, (13)

since X and Z are independent of time. Therefore, the rate-
of-strain tensor is given by ∂L/∂t and the viscous stress TV is
characterized by

TV = 2ηs ∂L
∂t

, (14)

where ηs is the viscosity of the gel. The total stress tensor in
the gel, in accordance with the assumed Kelvin-Voigt model,
is

Ts = −P sI + TV + TE, (15)

where P s denotes the pressure in the gel and is the desired
stress tensor to be used in conjunction with Eq. (4). The
constitutive law is linear from the Lagrangian perspective.

A complication in using Eq. (4) is that the total stress tensor,
Ts, is expressed in Lagrangian coordinates X and Z, and this
needs to be converted to Eulerian coordinates x and z to be
used. To do so, we introduce the Eulerian displacements ux

and uz satisfying the equations

x = X + ux(x,z,t) and z = Z + uz(x,z,t),

as well as an Eulerian pressure ps . When (X,Z,t) and (x,z,t)
correspond, in the sense that at time t the material particle
(X,Z) is at physical location (x,z), we have

Ux(X,Z,t) = ux(x,z,t), Uz(X,Z,t) = uz(x,z,t), and

P s(X,Z,t) = ps(x,z,t).

More formally, we have by definition:

Ux(X,Z,t) = ux[X + Ux(X,Z,t),Z + Uz(X,Z,t),t],

Uz(X,Z,t) = uz[X + Ux(X,Z,t),Z + Uz(X,Z,t),t],

P s(X,Z,t) = ps[X + Ux(X,Z,t),Z + Uz(X,Z,t),t].

Physically, the Lagrangian description fixes attention on
specific particles of the gel, whereas the Eulerian description
concerns itself with a particular region of the space occupied
by the gel.

To write down general formulas mapping the Lagrangian
derivatives into Eulerian derivatives, we assume we have a
generic function with H (X,Z,t) = h[x(X,Z,t),z(X,Z,t),t].
Using the relationships x = X + Ux(X,Z,t) and z = Z +
Uz(X,Z,t), we find

∂H

∂X

∣∣∣∣
Z,t

= ∂h

∂x

∣∣∣∣
z,t

(
1 + ∂Ux

∂X

∣∣∣∣
Z,t

)
+ ∂h

∂z

∣∣∣∣
x,t

(
∂Uz

∂X

∣∣∣∣
Z,t

)
,

(16)

where the subscript indicates what independent variables are
being held fixed when derivatives are taken. To generate
equations for the Lagrangian partial derivatives of Ux and
Uz in terms of Eulerian partial derivatives of ux and uz, we use
the generic formula Eq. (16) with H = Ux and h = ux as well
as H = Uz and h = uz. We find

∂Ux

∂X

∣∣∣∣
Z,t

= A

J
,

∂Uz

∂X

∣∣∣∣
Z,t

= B

J
, where

A = ∂ux

∂x

∣∣∣∣
z,t

− ∂ux

∂x

∣∣∣∣
z,t

∂uz

∂z

∣∣∣∣
x,t

+ ∂ux

∂z

∣∣∣∣
x,t

∂uz

∂x

∣∣∣∣
z,t

,

B = ∂uz

∂x

∣∣∣∣
z,t

,

J = 1 − ∂ux

∂x

∣∣∣∣
z,t

− ∂uz

∂z

∣∣∣∣
x,t

+ ∂ux

∂x

∣∣∣∣
z,t

∂uz

∂z

∣∣∣∣
x,t

− ∂ux

∂z

∣∣∣∣
x,t

∂uz

∂x

∣∣∣∣
z,t

. (17)

An identical process is used to map the partial derivatives with
respect to Z:

∂Ux

∂Z

∣∣∣∣
X,t

= C

J
,

∂Uz

∂Z

∣∣∣∣
X,t

= D

J
, where

C = ∂ux

∂z

∣∣∣∣
x,t

,

D = ∂uz

∂z

∣∣∣∣
x,t

− ∂ux

∂x

∣∣∣∣
z,t

∂uz

∂z

∣∣∣∣
x,t

+ ∂ux

∂z

∣∣∣∣
x,t

∂uz

∂x

∣∣∣∣
z,t

.

(18)

We will now formally argue that the small-strain approxi-
mation in the Lagrangian coordinates implies the small-strain
approximation in the Eulerian coordinates. To do so, we
assume that terms quadratic in the Eulerian derivatives are
small and utilize the method of dominant balance. With this
assumption, we obtain

∂ux

∂x

∣∣∣∣
z,t

∼ ∂Ux

∂X

∣∣∣∣
Z,t

,
∂uz

∂x

∣∣∣∣
z,t

∼ ∂Uz

∂X

∣∣∣∣
Z,t

, (19)

∂ux

∂z

∣∣∣∣
x,t

∼ ∂Ux

∂Z

∣∣∣∣
X,t

,
∂uz

∂z

∣∣∣∣
x,t

∼ ∂Uz

∂Z

∣∣∣∣
X,t

. (20)

Substituting these results back into Eqs. (17) and (18), and
invoking incompressibility of the gel Eq. (7) in J [defined in
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Eq. (17)] shows that indeed quadratic terms in the Eulerian
derivatives are equivalent in order to quadratic terms in
the Lagrangian derivatives. Thus, Eqs. (19) and (20) are
asymptotically consistent with the small-strain approximation
used in the Lagrangian framework.

Next, we determine the consequence of the infinitesimal-
strain approximation on the time derivatives. Specifically, we
again assume we have a generic function with H (X,Z,t) =
h[x(X,Z,t),z(X,Z,t),t]. Using the relationships x = X +
Ux(X,Z,t) and z = Z + Uz(X,Z,t), we find

∂H

∂t

∣∣∣∣
X,Z

= ∂h

∂x

∣∣∣∣
z,t

(
∂Ux

∂t

∣∣∣∣
X,Z

)

+ ∂h

∂z

∣∣∣∣
x,t

(
∂Uz

∂t

∣∣∣∣
X,Z

)
+ ∂h

∂t

∣∣∣∣
x,z

. (21)

To generate Lagrangian time derivatives of Ux and Uz in terms
of Eulerian partial derivatives of ux and uz, we use the generic
formula Eq. (21) with H = Ux and h = ux as well as H = Uz

and h = uz. We find

∂Ux

∂t

∣∣∣∣
X,Z

= α

J
,

∂Uz

∂t

∣∣∣∣
X,Z

= γ

J
, where

α = ∂ux

∂t

∣∣∣∣
x,z

− ∂ux

∂t

∣∣∣∣
x,z

∂uz

∂z

∣∣∣∣
x,t

+ ∂ux

∂z

∣∣∣∣
x,t

∂uz

∂t

∣∣∣∣
x,z

,

γ = ∂uz

∂t

∣∣∣∣
x,z

− ∂uz

∂t

∣∣∣∣
x,z

∂ux

∂x

∣∣∣∣
z,t

+ ∂uz

∂x

∣∣∣∣
z,t

∂ux

∂t

∣∣∣∣
x,z

,

(22)

and J is again given in Eq. (17). Using the small-strain
approximation, Eqs. (19) and (20), and the incompressibility
of the gel Eq. (7), we obtain

∂Ux

∂t

∣∣∣∣
X,Z

∼ ∂ux

∂t

∣∣∣∣
x,z

− ∂ux

∂t

∣∣∣∣
x,z

∂uz

∂z

∣∣∣∣
x,t

+ ∂ux

∂z

∣∣∣∣
x,t

∂uz

∂t

∣∣∣∣
x,z

,

(23)

∂Uz

∂t

∣∣∣∣
X,Z

∼ ∂uz

∂t

∣∣∣∣
x,z

− ∂uz

∂t

∣∣∣∣
x,z

∂ux

∂x

∣∣∣∣
z,t

+ ∂uz

∂x

∣∣∣∣
z,t

∂ux

∂t

∣∣∣∣
x,z

.

(24)

Note that in Eqs. (23) and (24), terms involving products of
a displacement gradient and a time derivative cannot generally
be neglected, even in spite of the fact that the small-strain
limit has already been invoked. Nevertheless, prior works (e.g.,
Refs. [4–8]) have neglected these terms, apparently without
realizing it. However, we can now make clear the conditions
under which the commonly used simplified version of these
equations is valid.

Equations (23) and (24) can be greatly simplified by
considering the following order-of-magnitude argument. In the
small-strain limit, ux,uz ∼ δ and x,z ∼ L such that δ/L � 1,
where δ is a characteristic displacement and L is a length-
scale characteristic of the problem geometry. Suppose that
t ∼ L/U , where U is a characteristic velocity. Then, the
time derivative terms are O(δU/L), and the terms involving
products of a time derivative and displacement gradient are an

order of magnitude smaller. This implies

∂ux

∂t

∣∣∣∣
x,z

∼ ∂Ux

∂t

∣∣∣∣
X,Z

, (25)

∂uz

∂t

∣∣∣∣
x,z

∼ ∂Uz

∂t

∣∣∣∣
X,Z

. (26)

Thus, when prior works use Eqs. (25) and (26) they implicitly
assume the above scalings.

The assumptions of lubrication theory, which we will
apply later, are consistent with the above order-of-magnitude
argument. However, even within the small-strain limit there
could conceivably be regimes where this argument does not
hold, e.g., if t ∼ δ/U , this corresponds to much faster motions
than those considered above. This is an important point that
appears to have been overlooked in prior work but becomes
clear through a systematic conversion from a Lagrangian
framework to an Eulerian one.

With the above results, the components of the Eulerian total
stress tensor are given by

Ts
xx = −ps + 2ηs ∂vs

x

∂x
+ 2E

∂ux

∂x
, (27)

Ts
xz = Ts

zx = ηs

(
∂vs

x

∂z
+ ∂vs

z

∂x

)
+ E

(
∂ux

∂z
+ ∂uz

∂x

)
, (28)

Ts
zz = −ps + 2ηs

∂vs
z

∂z
+ 2E

∂uz

∂z
, (29)

where

vs
x = ∂ux

∂t
, (30)

vs
z = ∂uz

∂t
. (31)

[The expressions for vs
x and vs

z from a Lagrangian perspective
are given by Eq. (13).] Here, the constitutive law is linear
from an Eulerian perspective, but it would have been nonlinear
had the terms in Eqs. (23) and (24) involving products of a
displacement gradient and a time derivative been retained. In
addition, we note that Eqs. (30) and (31) are the expressions
used in prior work, where they are simply written down (e.g.,
Refs. [4–8]). However, the order-of-magnitude arguments
given above make clear the assumptions under which these
expressions are valid.

We now state the remaining boundary conditions. At the
rigid plane z = −HR, the displacements are zero; that is, the
deformable gel is perfectly attached to the horizontal plane. At
the gel-liquid interface, z = f s(x,t), the normal and tangential
stresses in the gel and liquid are balanced:

ns · T� − ns · Ts + 2σ sHns = 0, (32)

where ns is the normal vector to the gel-liquid interface that
points into the liquid, σ s is the surface tension of the gel-
liquid interface, and H is the mean curvature of the gel-liquid
interface. The velocities in the gel and the liquid are equal,
which enforces both the no-slip and no-penetration conditions,

vs
x = v�

x and vs
z = v�

z . (33)
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In addition, there is a kinematic condition describing the
location of the gel-liquid interface. In what follows, we
simplify the calculations by studying the limit in which the
gel has no viscosity. Thus, ηs = 0 and we refer to the gel as
a solid.

C. Leading-order equations

The liquid thickness R is taken as a characteristic length
scale in the vertical direction. We denote the characteristic
length scale in the horizontal direction as λ and assume
that ε = R/λ � 1, allowing us to focus on long-wavelength
perturbations to the system [1,9]. Specific choices could be
made for λ (e.g., the instability wavelength), but here we leave
λ arbitrary for generality. The governing equations are made
dimensionless with the following scalings:

x ′ = x

λ
, z′ = z

ελ
, t ′ = t

λ/V
, (34)

(
v�

x

)′ = v�
x

V
,

(
v�

z

)′ = v�
z

εV
, (p�)′ = p�

η�V/(ε2λ)
, (35)

u′
x = ux

λ
, u′

z = uz

ελ
, (ps)′ = ps

η�V/(ε2λ)
, (36)

where V is a characteristic velocity scale in the x direction.
Note that the scaling of time is consistent with the order-of-
magnitude argument given in the previous section. It should
also be recognized that in order to be consistent with both the
small-strain limit and lubrication theory, we require δ/R � 1
and R/λ � 1, where δ is a characteristic displacement. In
what follows, all variables are dimensionless and the prime
superscript is omitted.

In the limit ε → 0, the following leading-order dimension-
less equations are obtained in the liquid:

0 = −∂p�

∂x
+ ∂2v�

x

∂z2
, (37)

0 = −∂p�

∂z
+ εG, (38)

0 = ∂v�
x

∂x
+ ∂v�

z

∂z
, (39)

where G = ρ�gR2/η�V reflects the physical balance between
the gravitational and viscous forces (from the liquid). We note
that one could define a rescaled version of G equal to εG if
desired. At the liquid-air interface z = f �(x,t), we have

∂f �

∂t
+ v�

x

∂f �

∂x
= v�

z , (40)

pa − p� = Sa ∂2f �

∂x2
, (41)

∂v�
x

∂z
= 0, (42)

where Sa = ε3σa/η�V is the ratio of the forces due to the
liquid-air interfacial tension relative to those due to the liquid
viscosity, and pa is the pressure of the air, taken to be zero.

In the solid, we have

− ∂ps

∂x
+ Ē

∂2ux

∂z2
= 0, (43)

− ∂ps

∂z
+ ερG = 0, (44)

∂ux

∂x
+ ∂uz

∂z
= 0, (45)

where Ē = Eλ/η�V measures the relative significance of
elastic to viscous forces (from the liquid), and ρ = ρs/ρ� is
the solid-liquid density ratio. At the surface of the horizontal
plane z = −H ,

ux(x,−H,t) = 0 and uz(x,−H,t) = 0. (46)

Finally, at the liquid-solid interface z = f s(x,t), the kinematic
condition, continuity-of-velocity boundary conditions, and
continuity-of-stress boundary conditions become

∂f s

∂t
+ v�

x

∂f s

∂x
= v�

z , (47)

∂ux

∂t
= v�

x, (48)

∂uz

∂t
= v�

z , (49)

p� − ps = Ss ∂2f s

∂x2
, (50)

∂v�
x

∂z
= Ē

∂ux

∂z
, (51)

where Ss = ε3σ s/η�V is the ratio of the forces due to the
gel-liquid interfacial tension relative to those due to the liquid
viscosity.

III. LINEAR STABILITY ANALYSIS

The base state of the present system corresponds to flat
liquid-solid and liquid-air interfaces that are located at z = 0
and z = 1, respectively. The liquid is at rest and the solid
is undeformed in the base state. The velocity and pressure
distributions in the base state, denoted by an overbar, are
solutions to the leading-order system Eqs. (37)–(51) with no
free-surface or interfacial deformations (f̄ s = 0 and f̄ � = 1):

v̄�
x = 0, v̄�

z = 0, and p̄� = εG(z − 1). (52)

The base-state displacements in the solid are

ūx = 0, ūz = 0, and p̄s = εG(ρz − 1). (53)

We study the stability of the base state to small-amplitude
perturbations. To each variable, a perturbation of the form

F ′(x,z,t) = F̃ (z)ei(kx−ωt), (54)

where F̃ (z) is a complex-valued eigenfunction, k is a
wavenumber, and ω is a complex-valued growth rate, is
added to the base state and substituted into the leading-order
system. With this choice for the normal mode, the perturbation
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quantities grow and instability occurs when the imaginary part
of ω, denoted by Im [ω], is positive. Note that the quantities
and f �(x,t) and f s(x,t) do not depend on z, so the quantities
f̃ � and f̃ s are constants.

The governing equations for the perturbation quantities in
the liquid and the solid, respectively, are given by

0 = −ikp̃� + d2ṽ�
x

dz2
, (55)

0 = −dp̃�

dz
, (56)

0 = ikṽ�
x + dṽ�

z

dz
, (57)

0 = −ikp̃s + Ē
d2ũx

dz2
, (58)

0 = −dp̃s

dz
, (59)

0 = ikũx + dũz

dz
. (60)

At the liquid-air interface, z = 1, we apply a domain pertur-
bation method to find

−iωf̃ � = ṽ�
z , (61)

−εGf̃ � − p̃� = −k2Saf̃ �, (62)

dṽ�
x

dz
= 0, (63)

where the first equation is the kinematic condition, the second
is the normal force balance, and the third is the tangential
force balance. The domain perturbation method involves
replacing each variable as the sum of its base state value
and a perturbation of the form of Eq. (54). The boundary
conditions are then expanded in a Taylor series around the
location of the unperturbed interface and only terms linear
in the perturbation quantities are retained [10]. Note that the
perturbation parameter associated with the liquid-air interface,
f̃ �, is a constant.

Similarly, at the liquid-solid interface, z = 0, the domain
perturbation method gives the following five boundary condi-
tions:

−iωf̃ s = ṽ�
z , (64)

(1 − ρ)εGf̃ s + p̃� − p̃s = −k2Ssf̃ s, (65)

dṽ�
x

dz
= Ē

dũx

dz
, (66)

−iωũx = ṽ�
x, (67)

−iωũz = ṽ�
z , (68)

where the first equation is the kinematic condition, the second
two equations are the force balances, and the final two
equations are the continuity-of-velocity boundary conditions

in the x and z directions, respectively. Again, the perturbation
parameter associated with the liquid-air interface, f̃ s , is a
constant in the system above. Finally, to close the system,

ũx(−H ) = ũz(−H ) = 0, (69)

at the rigid substrate. The system Eqs. (55)–(69) constitute
the generalized eigenvalue problem that needs to be solved to
complete the linear stability analysis.

The stability problem is solved analytically. From the
governing equations for the liquid perturbation quantities, we
have

ṽ�
x(z) = ikp̃�

2
z2 + c1z + c2, (70)

ṽ�
z (z) = k2p̃�

6
z3 − ikc1

2
z2 − ikc2z + c3, (71)

(a)

(b)

FIG. 3. (Color online) (a) Growth rate versus wavenumber for
H = 0 (dashed line) and H = 0.1 (solid line) with Ē = 1, Sa = 1,
Ss = 0, ε = 0.1, and ρ = 1. The case H = 0 corresponds to a rigid
substrate. (b) Growth rate versus wavenumber for Ē = 1, G = 10,
Sa = 1, Ss = 0, ε = 0.1, ρ = 1, and different values of H : H = 0
(solid line), H = 0.1 (dashed line), H = 0.5 (dashed-dot line), H =
1 (circles), and H = 2 (triangles).
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where p̃�, c1, c2, and c3 are constants. Applying the kinematic
condition Eq. (61), we find

c3 = −iωf̃ � − k2p̃�

6
+ ikc1

2
+ ikc2. (72)

The tangential stress condition Eq. (63) gives

c1 = −ikp̃�, (73)

and the normal stress condition Eq. (62) yields

p̃� = f̃ �(k2Sa − εG). (74)

Therefore, the perturbation liquid velocities are given by

ṽ�
x(z) = ikp̃�

2
z2 − ikp̃�z + c2, (75)

ṽ�
z (z) = k2p̃�

6
(z3 − 1) + k2p̃�

2
(1 − z2) + ikc2(1 − z) − iωf̃ �,

(76)

where p̃� is given by Eq. (74); these velocities are expressed in
terms of unknown constants c2 and f̃ �. Similarly, the perturba-
tion quantities for the displacements in the solid are given by

ũx(z) = ikp̃s

Ē

(
z2

2
− H 2

2

)
+ c4(z + H ), (77)

ũz(z) = k2p̃s

Ē

(
z3

6
− H 2z

2
− H 3

3

)

− ikc4

(
z2

2
+ Hz + H 2

2

)
, (78)

where p̃s and c4 are unknown constants.
We substitute the calculated perturbation quantities into the

five liquid-solid boundary condition Eqs. (64)–(68) to obtain
a linear system of equations for the unknown constants c2, f̃ �,
f̃ s , p̃s , and c4. The determinant of the linear system must be
zero because we seek nontrivial solutions. The characteristic
equation is a quadratic in the complex growth rate, where one
root is found to always be zero. The imaginary part of the
second root is examined to determine stability.

IV. RESULTS

The characteristic equation governing the growth rate is[
−k2 H 3

3
(D1 + D2) − k2H 2(D1) − k2H (D1) − k4 H 4

12Ē
(D1)(D2) − Ē

]
ω2 +

[
−k4 H 3

9
(D1)(D2) − k2 1

3
Ē(D1)

]
iω = 0,

(79)

where

D1 = k2Sa − εG, D2 = k2Ss + (1 − ρ)εG.

To further simplify matters, we set ρ = 1 (the density of the liquid equals the density of the solid) and Ss = 0 (there is no
surface tension at the liquid-solid interface). Then, the nonzero root of the characteristic equation is

ω = −i
−k2 1

3 Ē(k2Sa − εG)

−k2 H 3

3 (k2Sa − εG) − k2H 2(k2Sa − εG) − k2H (k2Sa − εG) − Ē
. (80)

Note that in the case where H = 0 (solid thickness is zero),

Im[ω] = −k2 1
3 (k2Sa − εG), (81)

which is the well-known result for the case where the solid is
rigid [1].

Figure 3 shows how Im[ω] varies as function of k, G, and H .
Figure 3(a) shows that the maximum growth rate and the range
of unstable wavenumbers increase as G increases. Explicit
expressions for the cutoff and most-dangerous wavenumbers
are readily obtained,

kcfull =
√

εG

Sa
, (82)

kmfull =
√

εG

2Sa
. (83)

These expressions do not depend on the thickness of the
deformable layer. We note that setting the value of Sa

determines the velocity scale V , and our choice of Sa = 1
is consistent with lubrication theory [1,9].

The maximum growth rate is

Im[ω]mfull = −
1

12Sa Ē(ε2G2)
H 3

12Sa (ε2G2) + H 2

4Sa (ε2G2) + H
4Sa (ε2G2) − Ē

.

(84)

The maximum growth rate increases when the solid layer
is deformable (H �= 0). These features are clearly seen in
Fig. 3(a). In Fig. 3(b), we see that when H > 1.35, the growth
rate becomes unbounded at two wavenumbers due to a zero
value in the denominator of Eq. (84). This singularity could
be removed by considering inertial terms, but for values of
H < 1.35 the inertialess theory is expected to yield accurate
results [11].

The growth rate can be examined in the limit of small H

by performing a Taylor series expansion of Eq. (80):

Im[ω]asym. = −k2 1

3
(k2Sa − εG)

+ k2 H

3Ē
k2(k2Sa − εG)2 + O(H 2). (85)
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(a)

(b)

FIG. 4. (Color online) (a) Growth rate versus wavenumber for
Ē = 1, G = 10, H = 0.1, Sa = 1, Ss = 0, ε = 0.1, and ρ = 1: full
equation, solid line; asymptotic equation, dashed line. (b) Maximum
growth rate versus ratio of gravitational to viscous forces for Ē = 1,
H = 0.1, Sa = 1, Ss = 0, ε = 0.1, and ρ = 1: full equation, solid
line; asymptotic equation, dashed line.

The leading order term is the expression for a rigid substrate.
The O(H ) term ∼k4 and is positive, indicating that the
coupling between the liquid and solid manifests itself as
an lower effective liquid-air interfacial tension. The effect
becomes more pronounced for thicker (larger H ) and softer
(lower Ē) solid layers.

In the limit of small H , the maximum growth rate is given
by

Im[ω]masym. = 1

3

(
εG

2

)2 1

Sa
+ H

3Ē

(
εG

2

)4 (
1

Sa

)2

+O(H 2). (86)

The expressions for the cutoff and most-dangerous wavenum-
ber are the same as Eqs. (82) and (83). Figure 4 shows that
our asymptotic results agree well with predictions from the
full equations when H = 0.1. Although not shown, we have

found good agreement even when H = 1 provided that G is
sufficiently small. This can be rationalized by noting that the
entire O(H ) term in Eq. (86) can be small even when H = 1
provided that the other parameters have suitable values.

Finally, it worthwhile to consider the magnitude of the effect
predicted above. If we take ηl = 10−3 Pa s, σ l = 0.01 N/m,
ρl = 103 kg/m3, E = 100 Pa, and ε = 0.1, then for G = 10
and Sa = 1 we find R ∼ 100 μm and Ē ∼ 104. The large
value of Ē indicates that even for very soft solids (E ∼
100 Pa), the enhancement of the growth rate due to solid
deformability is expected to be weak for cases of practical
interest. Nevertheless, without carrying out the analysis here,
it would not have been obvious to determine whether solid
deformability enhances or delays the film instability, and the
manner in which it does so [cf. (85)]. It is also interesting to
note that much stronger effects of solid deformability on liquid
behavior have been observed experimentally in cases where the
liquid is flowing (e.g., shear flow past a gel) [12–14]. In these
cases, solid deformability can introduce new instabilities as
well as modify existing ones.

V. CONCLUSIONS

Systematic conversion of the equations and boundary con-
ditions governing solid deformation reveals that the continuity-
of-velocity boundary condition at the liquid-solid interface is
more complicated than has previously been assumed, even
in the small-strain limit. Terms involving products of a
displacement gradient and a time derivative appear and cannot
be neglected in the small-strain limit unless the characteristic
time scale is O(L/U ), where L and U are a characteristic
length and velocity, respectively, in the lateral direction.
The approach taken here thus makes clear the conditions
under which the commonly used simplified version of the
continuity-of-velocity boundary condition is valid.

The small-strain approximation, lubrication theory, and
linear stability analysis are then applied to study the gravity-
driven instability of a liquid film underneath a soft solid.
Asymptotic analysis reveals that the coupling between the
liquid and solid manifests itself as a lower effective liquid-air
interfacial tension that leads to larger instability growth rates.
Although this effect is expected to be weak for cases of
practical interest, our work is limited to the linear regime and
much stronger effects may take place in the nonlinear regime.
The systematic approach taken here provides a framework
that could be extended to study nonlinear effects, e.g.,
through the development of long-wave evolution equations [7].
Such studies will also require accounting for nonlinear
constitutive behavior when the deformation gradients are no
longer small.
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