Teaching

Please feel free to contact me if you are interested in getting information about a particular course.

ISEE-325
Credits 3
This course covers statistics for use in engineering as well as the primary concepts of experimental design. The first portion of the course will cover: Point estimation; hypothesis testing and confidence intervals; one- and two-sample inference. The remainder of the class will be spent on concepts of design and analysis of experiments. Lectures and assignments will incorporate real-world science and engineering examples, including studies found in the literature.
ISEE-561
Credits 3
In systems where parameters can vary, we often want to understand the effects that some variables exert on others and their impact on system performance. “Data Analytics and Predictive Modeling” describes a variety of machine learning and data analysis techniques that can be used to describe the interrelationships among such variables. In this course, we will examine these techniques in detail, including data cleansing processes, data clustering, associate analysis, linear regression analysis, classification methods, naïve Bayes, neural networks, random forests, variable screening methods, and variable transformations. Cases illustrating the use of these techniques in engineering applications will be developed and analyzed throughout the course.
ISEE-661
Credits 3
In systems where parameters can vary, we often want to understand the effects that some variables exert on others and their impact on system performance. “Data Analytics and Predictive Modeling” describes a variety of machine learning and data analysis techniques that can be used to describe the interrelationships among such variables. In this course, we will examine these techniques in detail, including data cleansing processes, data clustering, associate analysis, linear regression analysis, classification methods, naïve Bayes, neural networks, random forests, variable screening methods, and variable transformations. Cases illustrating the use of these techniques in engineering applications will be developed and analyzed throughout the course. Note: Students required to take ISEE-561 for credit may not take ISEE-661 for credit.
ISEE-752
Credits 3
This course presents the primary concepts of decision analysis. Topics important to the practical assessment of probability and preference information needed to implement decision analysis are considered. Decision models represented by a sequence of interrelated decisions, stochastic processes, and multiple criteria are also addressed. We cover EMV and Non-EMV decision-making concepts. Finally, the organizational use of decision analysis and its application in real-world case studies is presented.