

Striking a Match: Developing a Remote-Mentoring Program for College Students with Disabilities

Lisa Elliot & James McCarthy

Deaf and Hard of Hearing Virtual Academic Community (DHHVAC)

Rochester Institute of Technology/National Technical Institute for the Deaf (RIT/NTID), Center on Access Technology

Postsecondary Disability Training Institute Conference, Philadelphia PA

June 10, 2016

Session objectives

- You will learn about the:
 - Deaf and Hard of Hearing Virtual Academic Community (DHHVAC), and why it includes mentorship functions
 - Basic functions of mentorship, with a focus on matching

Who We Are

- Deaf STEM Community Alliance
 - Only Alliance specifically for D/HH students
- Supported by the National Science Foundation, HRD #1127955
- Multi-year project (Sept 2011- Aug 2017)
 - Now in our 5th year

Campus Partners

RIT is the lead institution for this project, with Camden County College and Cornell University as partners.

CAMDEN COUNTY COLLEGE

Cornell University

Goal and Objectives

• Goal:

Create a *model* virtual academic community to increase the graduation rates of postsecondary D/HH STEM majors in the long term

- Iterative and incremental (Cockburn, 2008)
 - Iterative testing what works and revising what doesn't
 - Incremental building model in stages instead of all at once

Goal and Objectives

Objectives

1) Document and disseminate a description of the process of creating a model VAC for replication

2) Increase the GPAs and retention rates of D/HH students in STEM majors

What are the challenges?

Barriers to success

A vicious circle

Insufficient D/HH representation in STEM professions

Lack of support causes D/HH students to change majors or drop out D/HH professionals providing support and role modeling are few and far between

How DHHVAC is helping

- This model that offers academic and vocational support by:
 - Facilitating remote tutoring and mentoring
 - Developing an online community of practice between students, tutors, and mentors
- Mentoring in the DHHVAC: From published literature to practical application

DHHVAC Model Barriers & Strategies

DHHVAC e-mentoring model

- Mentors are few, far between, and busy
 - Solution: remote mentoring (de Janasz & Godshalk, 2013)
 - 'Go where the mentees are': online (Evans & Forbes, 2012)
- Scalable, affordable, and adaptable
 - Modular, open-source, and applicable to a wide variety of population groups and organizational structures

Mentorship functions

- Support (Ensher, Heun, & Blanchard, 2003)
 - Career development (academic/vocational)
 - Personal development
- Role modeling

Career development in the DHHVAC

- Both school- and job-related
- Case-specific
 - Assignments; projects; documents
- Successful cases tend to be related to this type of support
- Occasionally blurs into role-modeling
 - Interaction with co-workers and colleagues

Personal development in the DHHVAC

- More likely in informal, spontaneous mentoring relationships
- Culture of professionalism
- 'Weak-tie' relationships presents an additional challenge in ementoring (Shpigelman, Weisee, & Reiter, 2009)
 - More like neighbors or service providers (e.g., doctors or bank tellers) than friends

Role modeling in the DHHVAC

- Effect on mentoring relationship
 - Student may be overwhelmed or hesitant
 - Student may be proud to correspond
- Effect of computer-mediated communication (Ensher, Heun, & Blanchard, 2003)
- Traditional mentors as role models have a positive effect on eventual job satisfaction for mentees (Ensher, Thomas, & Murphy, 2001)
 - As opposed to peer or step-ahead mentors

The DHHVAC mentors

- Selected from a broad range of disciplines
 - Accounting, animal science, architecture, biology, biochemistry, biophysics, bioengineering, biotechnology, civil engineering, ecology, industrial engineering, information technology, materials science, structural engineering, user-experience design, Web development
- Recruited through a variety of channels
 - Professional Facebook group for deaf and hard of hearing (D/HH) STEM professionals
 - Alumni Association
 - Word of mouth
 - Previous participants in other roles (e.g., participating student)
- About half are RIT/NTID alumni; all are volunteers

Mentorship coordinator

- Recruits mentors and mentees
- Matches mentor/mentee dyads
- Develops and documents program structure and processes
 - Roles
 - Expectations
 - Facilitation (Single & Single, 2005)
- Adapts to new technological solutions and implements as needed
- Responds to mentor/mentee concerns and seeks solutions

From greeting to welcome

- Application
 - Basic demographic information, academic background, work history, consent
- Background check
 - RIT's HR department investigates suitability for working with students
- DHHVAC account and profile setup
 - Google Apps for Education—Custom domain
 - Gmail, Google+, Google Drive
 - Invitations to Google+ private community and Facebook group

From greeting to welcome

- Mentors are automatically assigned to new student participants
 - Considers student's major and mentor's occupation
- Student request
 - Often a result of a change in academic focus, or for specific projects
- Growing a pool
 - Accepting volunteers to hedge against future requests/new participants

Striking a match

- Two components (Dawson, 2014)
 - Selection
 - Mentors: Self-selection; interpersonal; mentee request
 - Mentees: Self-selection; instructor recommendation; tutor recommendation
 - Matching
 - Mentee choice
 - Vocational similarity
 - Fine-grained within engineering-related fields
 - Demographic similarity

Vocational similarity in the DHHVAC

• Importance varies; affected by mentee choice

- Case study: Student declines mentoring
- Case study: Student shops for mentors
- Cross- or multidisciplinary mentoring
 - Second case study above
 - Mentors for undeclared students

Demographic similarity in the DHHVAC

- A new wrinkle: Communication preference
- Another new wrinkle: Technology adoption (Williams, Sunderman, & Kim, 2012)
 - Case study: Glide
- Suggests cross-cultural competence may be a strong indicator of successful matches (Merriweather & Morgan, 2013)

Introductions

- First contact facilitated by DHHVAC staff, ideally
 - Basic information about each party
 - Suggestions for initial and future discussions
 - Request for reports of contact

Maintenance

- Monthly check-in
 - E-mail to all mentors with requests for feedback or reports of contact
 - Suggestions for discussion
 - Encouragement to keep lines of communication open
- Communication methods
 - E-mail strongly preferred by mentors/mentees
 - Video chats via Google Hangouts and Skype

Maintenance

Ongoing: Contact log

	А	В	С	D	E	F
1	Mentor Name	Student Name	Date of Contact	Method of Contact (E-mail? Hangout? Text? Other?)	Synchronous length of contact	Topic(s) of Discussion
2	Smith Jones	Robert Joseph	1/16/2016	Skype	45 minutes	Discussion of space analysis for Bushwick building lobby redesign

Collaborations and accomplishments

- Architecture
 - Architect and student corresponded on redesign of NTID lobby and associated spaces
- Engineering
 - Student corresponded with two mentors (industrial design and biotechnology) to develop a project for an annual innovation competition
- Biology
 - Mentor named one of NPR's "50 Greatest Teachers"

From One to Many

This is an example of a post within the private community.

+1's

Benefits

- Individual
 - Intergenerational continuity
 - Future collaborative relationship development
 - Number of colleagues in the field increases
- Institutional
 - Alumni maintain relationship with alma mater
 - Increased academic performance within a cohort
 - Increased retention rates within underrepresented populations
 - Increased graduation rates

Conclusions

- Underrepresented populations need effective role models
- Individual students may need individual support
- Mentorship is one solution
- The DHHVAC is a model that attempts to implement this solution
- Matching is key to the program's success
 - Far more complicated than it appears
- Intergenerational cooperation and support can further personal and institutional progress

Questions? Comments?

Contact information

Lisa Elliot, Pl lisa.elliot@rit.edu

James McCarthy, DHHVAC Manager jkmnod@rit.edu

http://www.dhhvac.org

Select References

- Cockburn, A. (2008). Using both incremental and iterative development. *Crosstalk: The Journal of Defense Software Engineering,* (May 2008), 27-30.
- Dawson, P. (2014). Beyond a definition: Toward a framework for designing and specifying mentoring models. *Educational researcher,* 43, 137-145.
- Ensher, E., Heun, C., & Blanchard, A. (2003). Online mentoring and computer-mediated communication: New directions in research. Journal of vocational behavior, 63, 264-268.
- Ensher, E., Thomas, C., & Murphy, S. (2001). Comparison of traditional, step-ahead, and peer mentoring on Protégés' support, satisfaction, and perceptions of career success: A social exchange perspective. *Journal of business and psychology*, 15, 419-438.
- Evans, R.R., & Forbes, L. (2012). Mentoring the 'Net generation': Faculty perspectives in health education. *College Student Journal,* 46(2), 397-404.
- de Janasz, S.C., & Godshalk, V.M. (2013). The role of e-mentoring in protégés' learning and satisfaction. Group & Organization Management, 38(6), 743-774.
- Merriweather, L.R., & Morgan, A.J. (2013). Two cultures collide: Bridging the generation gap in a non-traditional mentorship. *The Qualitative Report, 18*(Art. 12), 1-16.

Shpigelman, C., Weiss, T., Reiter, S. (2009). E-mentoring for all. *Computers in human behavior, 25*, 919-928.

- Single, P.B., & Single, R.M. (2005). E-mentoring for social equity: Review of research to inform program development. *Mentoring & Tutoring*, 13(2), 301-320.
- Williams, S., Sunderman, J., & Kim, J. (2012). E-mentoring in an online course: Benefits and challenges to e-mentors. *International Journal of Evidence Based Coaching and Mentoring*, 10(1), 109-123.