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Abstract
We lay down a general scheme to quantify the amount of genuine tripartite entanglement present in the spatial and energy-

time degrees of freedom of entangled photon triplets using a resource-based measure known as the tripartite entanglement of
formation. Quantifying genuine tripartite entanglement relative to a number of maximally entangled three-qubit Greenberger-
Horne-Zeilinger (GHZ) states called gebits, the tripartite entanglement of formation serves as a basis of comparison between
different tripartite entangled states of differing dimension. Demonstrating genuine tripartite entanglement is doubly challenging
because it is not enough to show that each party is inseparable from the other two (which is sufficient only for pure states).
Instead, one must rule out all mixtures of all combinations of biseparable states from describing the tripartite state. To meet
this challenge, we use entropic measures of the statistics of tripartite systems to simultaneously bound the correlations each
party has with the other two, and in so doing place a lower limit to the tripartite entanglement of formation. Even though
our measure never over-estimates the entanglement present, we estimate the effectiveness of our technique by determining
the exact tripartite entanglement of a triple-gaussian triphoton wavefunction with the same correlations as seen in photon
triplets generated in third-order spontaneous parametric down-conversion (SPDC). Between these two efforts, we show that a
substantial amount of tripartite entanglement exists in both the spatial and energy-time degrees of freedom of these systems,
and propose an experiment that can measure them.
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I. INTRODUCTION

Quantum entanglement is often cited as the signature aspect of quantum physics that marks its departure from the
classical regime, and with good reason. The exponentially large state space coming from entangled superpositions
of multiple qubits is the basis for the advantages seen in quantum computing. The manifestly secure correlations
from entanglement forms the bedrock of quantum networking. In addition, the enhanced sensitivity using entangled
states of light allows researchers to probe beyond the standard quantum limit of shot noise. It is because of these
applications that characterizing the amount of entanglement present in a system as efficiently as possible is of critical
importance toward benchmarking the utility and performance of new sources as they are being developed.

Historically, entanglement was originally considered a yes-or-no question. Over the last few decades [1–6], many
researchers have developed entanglement monotones and entanglement measures to compare different entangled states
with one another, either by how far away they are from the set of separable (unentangled) states, or by its utility
as a resource in entanglement-consuming tasks. While two-party entanglement has been well studied, and there
are increasingly efficient ways of quantifying it, entanglement shared between three or more parties has comparably
little research. In this work, we describe our strategy [7] to quantify genuine tripartite entanglement in the high-
dimensional degrees of freedom shared by entangled photon triplets. We describe the nonlinear-optical processes
used to generate these triplets, and the properties of the triple-gaussian wavefunction describing their spatial and
energy-time correlations.

II. QUANTIFYING TRIPARTITE ENTANGLEMENT

Entanglement is defined as a departure from separability. Given three parties A,B, and C, and a joint quantum state
ρ̂ABC shared by them, that state is considered separable either if the state factors out completely into ρ̂A ⊗ ρ̂B ⊗ ρ̂C ,
or if it can be expressed as a classical mixture of these separated states:

ρ̂
(sep)
ABC =

∑
i

pi

(
ρ̂Ai ⊗ ρ̂Bi ⊗ ρ̂Ci

)
. (1)

The correlations present in a separable state are exclusively classical, given the preparation probability distribution
{pi}. Any state that does not have this form is somehow entangled.

With only two parties, there is only one way a joint state can factor out as a product of individual states. With
three parties, there are multiple forms of separability, which define multiple forms of entanglement. For example,
states of the form AB ⊗ C:

ρ̂AB⊗C =
∑
i

pi

(
ρ̂ABi ⊗ ρ̂Ci

)
, (2)

are known as biseparable because they are expressible as mixtures of products of two states. For three parties, to be
triseparable is to be fully separable.

Because there are multiple ways for a tripartite state to be in some way separable, demonstrating genuine tripartite
entanglement is especially challenging. It is not enough to show that the state ρ̂ABC is not within any class of
biseparable or fully separable states. Instead, one must show that the state cannot be made using any ensemble of
states coming from any of these classes of states.

To quantify genuine tripartite entanglement, we use a measure [8] called the tripartite entanglement of formation
E3F (ABC):

E3F (ABC) = min
|ψ〉i

∑
i

pi min{Si(A), Si(B), Si(C)}. (3)

For each pure-state decomposition of ρ̂ABC , we find the minimum entanglement across all bipartitions (which would be
zero for a biseparable state). Then, we find the minimum for this number across all possible pure-state decompositions
of ρ̂ABC , which gives us the tripartite entanglement of formation E3F . If E3F > 0, then there must be some
genuinely tripartite-entangled state in every possible pure-state decomposition, proving the state is genuinely tripartite
entangled.

The tripartite entanglement of formation E3F is a generalization of the ordinary entanglement of formation defined
between two parties [1]:

EF (AB) = min
|ψ〉i

∑
i

pi min{Si(A), Si(B)}. (4)

Approved for Public Release; Distribution Unlimited: PA#: AFRL-2023-2319



3

For the ordinary entanglement of formation EF , there is a standard unit of entanglement known as the ebit, which is
a two-qubit maximally entangled Bell state:

|ψ〉(ebit) =
1√
2

(
|0, 0〉+ |1, 1〉

)
. (5)

Using the entanglement of formation EF , different two-party states can be compared relative to the number of ebits
of equal value.

For the tripartite entanglement of formation E3F , we define a unit of three-party entanglement known as the gebit,
which is the three-qubit Greenberger-Horne-Zeilinger (GHZ) state:

|ψ〉(gebit) =
1√
2

(
|0, 0, 0〉+ |1, 1, 1〉

)
. (6)

Similar to the ordinary entanglement of formation, the tripartite entanglement of formation E3F can be used to
compare different three-party states relative to a corresponding number of gebits. We use this purely as a side-by side
comparison of different tripartite entangled states, as there are unresolved questions in interpreting this measure as a
resource measure similar to the ordinary entanglement of formation.

There are complexities that arise in considering the gebit as a unit of tripartite entanglement. In particular, the W
state

|W 〉 =
1√
3

(
|1, 0, 0〉+ |0, 1, 0〉+ |0, 0, 1〉

)
, (7)

is genuinely tripartite entangled, but cannot be expressed in terms of gebits. When synthesizing copies of genuinely
multipartite entangled states using local operations and classical communication (LOCC), there is still no known set of
resource states that can be used to accomplish this [9]. Moreover, the distillable tripartite entanglement can actually
be greater than the tripartite entanglement of formation because it is possible in principle to distill genuine tripartite
entanglement from multiple copies of biseparable states as a resource [10, 11]. While there remain fundamental
questions to be answered on the nature of tripartite entanglement as a resource, we use the tripartite entanglement
of formation E3F to compare the amount of entanglement in an unknown quantum state to a corresponding number
of gebits.

A. Quantifying entanglement with correlations

It is often said that entanglement is a kind of correlation. While correlations can exist without entanglement (i.e.,
classical correlations), entanglement cannot exist without correlations. Completely uncorrelated product states are
separable by construction. Moreover, if the classical mutual information is zero in every local measurement basis,
then the state is again completely uncorrelated [12]. Together, this implies that all entangled states must have some
kind of measurable correlation.

Consider the following entanglement-correlation relation:

H(QA : QB) ≤ EF (AB) + min{S(AB), S(A), S(B)}. (8)

See proof in Appendix A. Here, classical correlations are quantified by the Shannon mutual information H(QA : QB)

of the joint probability distribution for the measurement outcomes of observables Q̂A and Q̂B ; the mixedness of the
state ρ̂AB is quantified by the joint von Neumann entropy S(AB); and the mixedness of the subsystems A and B
are quantified by their respective von Neumann entropies. For pure states of AB, (S(AB) = 0), and all measurable
correlations are identified as entanglement. For separable states, the correlations are bounded by the mixedness of
the subsystems.

Because two-party entanglement is so closely identified with two-party correlations, we examined how this relation-
ship works for tripartite entanglement.

In [13], we showed how one could use the correlations present between three D-level quantum systems to begin to
quantify the tripartite entanglement present. In particular, we found the relation:

E3F (ABC) ≥ −S(A|BC)− S(B|AC)− S(C|AB)− 2 log(Dmax), (9)

where Dmax is the maximum dimension between systems A, B, and C; and where S(A|BC) (for example) is the
quantum conditional entropy equal to S(ABC)− S(BC). For discrete observables (QA, QB , QC) and (RA, RB , RC),
one can use a version of the uncertainty principle in the presence of quantum memory [14] to show:

− S(A|BC) ≥ log(Ω)− (H(QA|QB , QC) +H(RA|RB , RC)), (10)
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where

Ω ≡ min
i,j

(
1

|〈qi|rj〉|2

)
, (11)

is a value that equals zero if observables Q̂A and R̂A commute, and approaches the dimension of system A, DA as
Q̂A and R̂A approach being maximally uncertain with respect to one another (i.e., where the inner product of all

eigenstates |qi〉 of Q̂A and |rj〉 of R̂A are equal to 1/
√
DA). This relation (10), when substituted into our relation (9)

allows us to quantify genuine tripartite entanglement in D-level systems. Because this strategy explicitly includes the
dimensions of the systems, it could not be used to quantify entanglement in continuous-variable systems unless we
make the a-priori assumption that the tripartite state is pure, which is experimentally unrealistic.

To solve this challenge, we developed a continuous-variable version of the uncertainty relation with quantum memory
[15]:

− S(A|BC) ≥ log(2π)− h(xA|xB , xC)− h(kA|kB , kC), (12)

where h(x) is the continuous Shannon entropy [16] of probability density ρ(x), to create a corresponding entanglement
bound for continuous variables [7] where:

E3F (ABC) ≥ log(2π|η̄||β̄|)− h(ηAxA + ηBxB + ηCxC)

− h(βAkA + βBkB + βCkC). (13)

Here, |η̄||β̄| = mini{|ηi||βi|}, and the coefficients (ηA, ηB , ηC) and (βA, βB , βC) may be adjusted to best fit the
correlations naturally present in the system.

III. ENTANGLED PHOTON TRIPLETS IN NONLINEAR OPTICS

Nonlinear optics has been the preferred source for entangled photon pairs for decades. In short, photons from a
pump laser pass through a transparent medium, and the atoms within that medium respond to the oscillating electric
field. When this disturbance is small enough that the response of the medium is in proportion to the electric field,
we are in the domain of linear optics. Nonlinear optics exists in the regime where the field is strong enough that the
atoms respond anharmonically, but before the electrons are ripped off of the atoms altogether.

The response of the material in nonlinear optics is described as a power series of the induced polarization of light
~P as a function of the electric field ~E [17]:

Pi = ε0

(
χ

(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijk`EjEkE` + ...

)
. (14)

Here, χ
(1)
ij gives the linear optical susceptibility, while χ

(2)
ijk and χ

(3)
ijk` give the second and third-order nonlinear optical

susceptibilities respectively.
Just as in acoustic vibrations, an applied electric field of a single frequency can induce the generation of light at

harmonics of that electric field. What determines how much of each harmonic gets generated is in the magnitude
of the nonlinear susceptibilities, and whether the dispersion in the material makes momentum conservation possible
(where the index of refraction affects the wavelength and therefore the momentum of photons).

Quantum mechanically, generating light at a frequency twice that of the original pump beam requires pairs of
pump photons to be consumed to generate each photon at the second harmonic. Since the fundamental conditions
that optimize second-harmonic generation are only concerned with total momentum conservation and the scale of the
susceptibility, they are also the conditions that optimize the reverse process where pairs of photons (here called the
signal and idler photons) are generated at frequencies adding up to the frequency of an annihilated pump photon.
This χ(2) process, known as Spontaneous Parametric Down-Conversion (SPDC), has been the most popular source
of entangled photon pairs in quantum information for decades. Where the emitted biphotons are regarded as being
nearly in a pure state, the strong position correlations that come from the pair having a common point of origin (the
birth zone [18]), and the strong momentum correlations coming from momentum conservation with the original pump
photon imply a large degree of spatial entanglement can be created [15]. Similarly, from a common time of generation,
and energy conservation, a large amount of energy-time entanglement can be generated between these photon pairs
as well.

To create entangled photon triplets in nonlinear optics, there are two major approaches. The first is to use a χ(3)

process that is the third-order analogue of SPDC, and the reciprocal process to third-harmonic generation. In this
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case, photon triplets are created in single quantum events from each annihilated pump photon. The second approach
is to use χ(2)-SPDC twice; first to split the pump photon into signal and idler, and the second to split the signal
photon into two again to yield three photons in total. In both approaches, momentum conservation and common
places of origin give rise to correlations and entanglement. From this, the coefficients (ηA, ηB , ηC) = (1,−1/2,−1/2)
and (βA, βB , βC) = (1, 1, 1) will allow our tripartite entanglement relation to take maximum advantage of these
correlations.

Since both approaches to generate entangled photon triplets cover the same kind of correlations, we consider the
example of third-order χ(3)-SPDC. The case of cascaded χ(2)-SPDC is covered in [7].

In χ(3)-SPDC, the triphoton wavefunction in one transverse dimension has the form:

ψ(k1, k2, k3) ≈ Nαp(k1 + k2 + k3) (15)

× Sinc

((
|k2 + k3|2 + |k1 + k3|2 + |k1 + k2|2

) 3Lz

4|~kp|

)
,

where αp(k1 + k2 + k3) is the transverse pump momentum amplitude, which with momentum conservation becomes a
function of k1 +k2 +k3. See Appendix B for details. Like in ordinary SPDC, the sinc function coming from integrating

the phase matching exponential ei∆
~k·~r over the dimensions of the nonlinear medium, except here we have a different

momentum mismatch ∆~k ≡ ~k1 + ~k2 + ~k3 − ~kp.
Our expression for ψ(k1, k2, k3), while complicated, greatly simplifies if we use the rotated coordinates:

ku =
1√
3

(k1 + k2 + k3), (16a)

kv =

√
2

3

(
− k1 +

k2 + k3

2

)
, (16b)

kw =
1√
2

(k2 − k3), (16c)

so that

ψ(ku, kv, kw) ≈ Nαp(ku
√

3)Sinc

(
3Lz

4|~kp|

(
4k2
u + k2

v + k2
w

))
. (17)

Just as the biphoton wavefunction in ordinary SPDC for a gaussian pump beam can be approximated as a double-
Gaussian wavefunction, the triphoton wavefunction can be approximated as a triple-gaussian wavefunction:

ψ(ku, kv, kw) ≈ N e−( 32a
9 +3σ2

p)k2ue−
8a
9 (k2v+k2w) (18)

where a = 3Lz
4kp

and σp is the pump beam radius in position space (such that the 1/e2 beam diameter is 4σp).

In a similar fashion, one may derive a corresponding wavefunction for the energy/time correlations of the entangled
triphotons from its joint spectral amplitude. For a narrow bandwidth pump, the joint spectral amplitude has the
form:

ψ(δω1, δω2, δω3) = N ′s(
√

3δωu)Sinc(
κ0Lz

4
(δω2

v + δω2
w)) (19)

where κ0 is the group-velocity dispersion at the central frequency of the down-converted photon triplet (i.e.,
|d2k/dω2|ω10), and where for example δω1 = ω1 − ω10 is the detuning of ω1 form its central frequency, and
(δωu, δωv, δωw) are rotated frequency coordinates from (δω1, δω2, δω3) similar to those just used in momentum.
Here, s(δωp) is the pump spectral amplitude (relative to pump central frequency) where energy conservation allows

us to make the substitution δωp = δω1 + δω2 + δω3 =
√

3δωu. See Appendix C for derivation and details. Since
these energy-time tripartite correlations are of the same quality as the spatial correlations, we focus on the spatial
correlations for the remainder of this work.

IV. THE TRIPLE-GAUSSIAN WAVEFUNCTION AND TRIPARTITE ENTANGLEMENT

To describe the tripartite entanglement available in entangled photon triplets, we will first look at the triple-gaussian
wavefunction that fits these correlations, and observe its entanglement properties.
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For two-party entanglement in continuous-variable wavefunctions, the double-Gaussian wavefunction is an approx-
imate generalization of the Bell state to high dimension:

ψ(x1, x2) =
1√

2πσ+σ−
e
− (x1+x2)2

8σ2
+ e

− (x1−x2)2

8σ2− , (20)

which in the rotated coordinates:

x+ ≡
x1 + x2√

2
: x− ≡

x1 − x2√
2

, (21)

separates into the product:

ψ(x+, x−) =
1

(2πσ2
+)1/4

e
−
x2+

4σ2
+

1

(2πσ2
−)1/4

e
−
x2−
4σ2− . (22)

Here, σ(x1 + x2) = σ+

√
2 and σ(x1 − x2) = σ−

√
2. For a biphoton sharing a common point of origin in an otherwise

large beam, σ− � σ+, and there will be strong correlations and entanglement. In the limit that σ− approaches zero,
we approach a generalization of the Bell state to continuous variables known as the EPR wavefunction [19]. Because of
how position and momentum space are related by fourier transforms, we can transform the double-gaussian function
readily to momentum space by the substitution:

σk+ =
1

2σ+
: σk− =

1

2σ−
. (23)

From this, we can also see that the same regime that provides strong position correlations (σ+ � σ−) will also provide
strong momentum anti-correlations (σk− � σk+).

For three-party entanglement in continuous-variable wavefunctions, we have the triple-gaussian wavefunction, which
is an approximate generalization of the GHZ state:

ψ(x1, x2, x3) =
e
− (x1+x2+x3)2

12σ2u
− (x1− x2+x3

2 )
2

6σ2v
− (x2−x3)2

8σ2w√
(2π)3/2σuσvσw

, (24)

The triple-gaussian wavefunction (when σv = σw) describes the spatial correlations of entangled photon triplets
that are symmetric under permutation of parties. In general, the momentum bandwidth of the pump beam, plus
momentum conservation (or alternatively just the pump beam diameter) mostly determines σu, while only phase
matching determines σv (and therefore σw).

When expressed in the rotated coordinates:

xu =
1√
3

(x1 + x2 + x3), (25a)

xv =
2√
6

(
−x1 +

x2 + x3

2

)
, (25b)

xw =
1√
2

(x2 − x3), (25c)

the triple-Gaussian wavefunction simplifies substantially to:

ψ(xu, xv, xw) =
e
− x2u

4σ2u e
− x2v

4σ2v e
− x2w

4σ2w√
(2π)3/2σuσvσw

. (26)

Here we can appreciate that the triple-gaussian wavefunction of entangled photon triplets is a gaussian spheroid
that transforms from a pancake-shaped distribution in momentum space (momenta nearly constrained to the plane
k1 + k2 + k3 ≈ const) to a sausage-shaped distribution in position space (position of one determines the other two to
within a birth zone). As defined for biphotons [18], the triphoton birth zone ∆BZ here is twice the standard deviation
of the initial position of one of the down-converted photons x1 conditioned on the nominal position of the annihilated
pump photon xp = (x1 + x2 + x3)/3. With this definition, we get:

∆BZ = 2σ(x1|xp) ≈
√

4

3
σ(x1 − x2) =

4

3
σ

(
x1 −

x2 + x3

2

)
, (27)
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where the approximation comes from the triple-gaussian case where the distribution factors into a product of distri-
butions for xu, xv and xw, respectively. In the case of entangled photon triplets generated in multiple-stage processes
(such as cascaded χ2-SPDC), the triphoton birth zone is more a measure of photon position correlations rather than
the size of the region in which the triphoton was approximately generated.

Remarkably, the tripartite entanglement of formation can be calculated exactly for this triple gaussian wavefunction
as discussed in [7]:

E3F (ABC) =
h2(λ0)

λ0
, (28)

where h2(λ0) is the binary entropy function:

h2(λ0) = −λ0 log2(λ0)− (1− λ0) log2(1− λ0), (29)

and

λ0 =
2

1 + 1
3

√
5 + 2

(
σ2
u

σ2
v

+
σ2
v

σ2
u

) . (30)

Here we see that whenever the triple-Gaussian state is not fully separable (i.e., σu 6= σv), there is a nonzero amount of
tripartite entanglement. Moreover, this tripartite entanglement may be made arbitrarily large when either σu � σv
or σv � σu.

The GHZ state possesses no two-party entanglement. Although the triple Gaussian wavefunction is an approximate
generalization of the GHZ state to high dimension, one can show that unless fully separable, it always has some small
amount of two-party entanglement. To show this, we look at the correlation statistics of a two-party subsystem of
the tripartite triple-Gaussian state.

The marginal position probability distribution of the triple Gaussian wavefunction is a double-Gaussian:

ρ(xB , xC) =
1

2πσuσ2
v

√
1

3σ2
u

+ 2
3σ2
v

e
− 3

4(2σ2u+σ2v)
(xB+xC)2

e
− (xB−xC )2

4σ2v , (31)

from which we have the statistics:

σ(xB + xC) =

√
4σ2

u + 2σ2
v

3
: σ(xB − xC) = σv

√
2. (32)

The marginal momentum probability distribution of the triple Gaussian wavefunction is also a double-Gaussian.
Since the triple gaussian wavefunction factors when using separated coordinates, we know from the fourier transform
relations of a gaussian wavefunction that:

σku =
1

2σu
: σkv =

1

2σv
. (33)

In short, we may take the momentum-space triple-gaussian probability density to be identical to the position-space
density, once these preceding substitutions are made.

In momentum space, we have the correlation statistics:

σ(kB + kC) =

√
1

3σ2
u

+
1

6σ2
v

: σ(kB − kC) =
1

σv
√

2
. (34)

Here, we discover a tradeoff in correlations. To obtain strong position correlations, one must have σv � σu.
However, to obtain strong momentum correlations one must be in the opposite regime where σv � σu. If there is any
two-party entanglement in these two subsystems, it has a strict upper limit. Using these statistics, we can examine
whether any entanglement can be witnessed using these correlations.

In 2002, Mancini et. al [20] developed a strong separability criterion that works for continuous Fourier-conjugate
variables (e.g., position/momentum). In particular, all separable states must obey the condition

0 ≥ − log(σ(xB ∓ xC)σ(kB ± kC)), (35)
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which in terms of the triple-gaussian wavefunction becomes:

0 ≥ max

{
− log

(√2σ2
v

3σ2
u

+
1

3

)
,− log

(√2σ2
u

3σ2
v

+
1

3

)}
. (36)

For σu = σv the triple gaussian state is fully separable, and the right-hand side of this criterion is zero. For all
other cases, the right-hand side of this criterion exceeds zero, but has a small upper limit of about +0.7925 bits
(unlike for tripartite entanglement, which has no upper limit). This can be understood through the entanglement
correlation relation (8). In the limit of large tripartite entanglement S(C) is large, but so is S(AB). This means that
the measured correlations between A and B may be large without there needing to be large entanglement between A
and B. Still, this means that unlike a true GHZ state, the triple-Gaussian wavefunction is either fully separable, or
else possesses both two- and three-party entanglement.

V. EFFECTIVENESS OF TRIPARTITE CORRELATIONS AT QUANTIFYING TRIPARTITE ENTAN-
GLEMENT

With the basics of tripartite entanglement of the triple-gaussian wavefunction covered, we can compare how well
our entanglement quantification strategy works compared to the approximate tripartite entanglement present.

Given the triple gaussian wavefunction

ψ(ku, kv, kw) ≈ N e−( 32a
9 +3σ2

p)k2ue−
8a
9 (k2v+k2w), (37)

we can express our tripartite entanglement criterion in terms of these coordinates:

E3F (ABC) ≥ − log(3
√

2e)− 1

2
log(σ2

vσ
2
ku), (38)

with variances

σ2
v =

8a

9
: σ2

ku =
1

4
(

32a
9 + 3σ2

p

) , (39)

to obtain our bound:

E3F (ABC) ≥ 1

2
log

(
16 +

18σ2
pkp

Lz

)
− log(3

√
2e). (40)

To put this bound into practice, let us input reasonable experimental parameters. Examples of the the reverse
process (THG) are seen in [21, 22]. Consider a pump beam of wavelength of 516.67nm incident on a χ(3) nonlinear
medium of length Lz = 3mm. Let us consider degenerate χ(3)-SPDC into photon triplets of wavelength 1550nm. For
some materials, this phase matching may be achieved by angle tuning the medium and using its birefringence similar
to how most χ(2)-SPDC is carried out in other bulk crystals. To expand the range of capability, it would be useful to
achieve quasi-phase matching by periodically varying χ(3) over the length of the medium. However, periodic poling
does not flip the sign of χ(3) as it does for χ(2). Instead other strategies must be carried out such as periodically doping
the medium, or in using the intensity-dependent refractive index along with an illumination that varies periodically
along the medium. To phase-match PPLN, we consider type-I third-order SPDC, where the photon triplet has a
polarization orthogonal to the pump (but equal to each other), and with a quasi-phase matching period of 17.69µm
using dispersion data from [23] .

With these experimental parameters λp = 516.67nm and Lz = 3mm, we have plotted in Fig. 1 the amount of
spatial entanglement that can be witnessed as a function of the pump beam radius σp, as well as the approximate
total entanglement assuming a triple-Gaussian wavefunction. Here we see that there can be a substantial amount of
tripartite spatial entanglement within these systems (where for example 5 gebits together constitutes 15 qubits).

VI. DISCUSSION: PROPOSED EXPERIMENT AND TECHNICAL CHALLENGES

Assuming we have a suitable source of tripartite entanglement, we can utilize the same kind of experiment used
to measure two-party spatial entanglement in [24]. In short, one images the face of the nonlinear medium (or its
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0.1 1 10
σp in (mm)

E3 F minimum in (gebits)

1.8074

5.1223

8.4441

0.02693
0

FIG. 1: Semi-log plot showing E3F as a function of pump beam radius σp for the triphoton wavefunction in one
transverse spatial degree of freedom used in third-order degenerate SPDC. The blue curve represents the amount of

tripartite entanglement that can be witnessed with these correlations. The yellow curve above the blue curve
represents the exact tripartite entanglement in the system assuming the triphoton wavefunction is well-described as

a triple-gaussian wavefunction with the same correlations. In the limit of large σp, the two curves approach a
constant offset of 1− 2/ ln(2) or about −1.8854 gebits.

Fourier transform onto three digital micromirror device (DMD) arrays whose pixels can be directed toward or away
from respective photon detectors (See Figure 2 for diagram). To accomplish this, the light is split first with a variable

beamsplitter tuned to amplitudes (
√

1/3,
√

2/3), where the spatial mode associated to the
√

1/3 amplitude is directed

toward the first DMD. The light in the exiting spatial mode associated to the
√

2/3 amplitude is split again, this
time with an ordinary 50/50 beamsplitter, whose exiting modes are directed toward their respective DMD arrays.
Using this pair of beamplitters maximizes the amplitude for the photon triplets to be separated, assuming they are
indistinguishable in polarization/frequency. These detections will be correlated with photon correlators in order to
obtain a photon triplet coincidence count rate. By examining how the triplet photon coincidence count rate changes
as a function of the patterns we place on each DMD array, we may build up either the joint position probability
distribution or the joint momentum distribution for the photon triplets, which may be used to conservatively estimate
the spatial entanglement present.

NLC

LASER

66/33BS

DMD

50/50
BS

D1 D3

DMDDMD D2

PC

FIG. 2: Basic experimental diagram on using DMD arrays in concert with imaging optics and a Photon correlator
(PC) to measure triplet coincidence counts from a nonlinear crystal (NLC) pumped by a laser, one can obtain the

joint position probability distribution of the generated photon triplets.

To obtain these photon triplet statistics there are both technical and fundamental challenges that need to be
addressed. The major technical challenge to this approach is in collection efficiency. If we only collect those photon
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triplets that reflect off of one triplet of micromirrors at a time, and scan over all possible pixel triplets, this collection
will be completely impractical because of the large number of pixel triplets, and the small fraction of the total
illumination that would correspond to a particular triplet. In [24] , we solved this challenge for photon pair sources
by using a smart multi-resolution sampling scheme. Instead of scanning over individual pixel triplets, we would first
measure the spatial correlations at the lowest possible resolution (where say half of each DMD would be all-on or
all-off). Then, were we detect significant coincidence counts, we would subdivide those regions, and measure them at
twice the resolution. Those sub-regions with significant correlations would be further subdivided and sampled until we
have obtained a coarse-grained approximation of the biphoton joint probability distribution that is sampled at high
resolution only where there is significant probability, but without overlooking regions of low probability. Because our
tripartite entanglement quantifier (13) is based on continuous entropy, and coarse-graining cannot decrease continuous
entropy, we can use these same methods to quantify the tripartite entanglement present in these systems without
over-estimating it.

The major fundamental challenges in quantifying high-dimensional tripartite entanglement are in efficiency and
confounding secondary processes. While third-harmonic generation (THG) can be obtained with reasonably high
efficiency at sufficiently high input powers, this works primarily because the efficiency of THG actually increases with
increasing input power. The reverse process of χ(3)-SPDC is a process whose efficiency is relatively constant with
pump power, and is low enough that demonstrations of photon triplet generation of more than ten triplets per minute
[25, 26] are highly significant. Alternatively, one can consider a resonant system where the pump laser power may
build up to a large value in a micro-ring resonator made out of a χ(3) medium, but where the down-converted photon
triplets are readily extracted.

For an estimate of the number of generated photon triplets in a χ(3) medium, we assume a single-mode gaussian
pump beam of power P and radius σp; a medium of length Lz, and wide enough in both directions to encompass that

beam, and photon triplets with equal focal parameter to the pump such that, say σ1 = σp
√

3. This could be used to
describe triplet generation in a single-mode waveguide. With these assumptions (as well as assuming perfect phase
matching), one can use similar methods to those employed in [27] to show:

〈Rtriplets〉 =
~

2592
√

3π2ε20c
4

ng1ng2ng3ngp
n2
pn

2
1n

2
2n

2
3

(χ
(3)
eff )2ω3

p0

|κ0|
PLz
σ4
p

. (41)

where here, κ0 is the group-velocity dispersion (second derivative of k(ω)) at the central frequency of the down-
converted photon triplets. See Appendix C for abbreviated derivation. If we use statistics of fused silica [28, 29],
estimated for third-order downconversion from 516.67 → 1550nm (using Miller’s Rule to interpolate between the

values of χ
(3)
eff in [29]), and assume a 10µm (1/e2) beam diameter for the down-converted spatial modes, we obtain

the simplified formula:

Rtriplets ≈ (11.6267)LzP (42)

for a 10cm-long waveguide, one would need a relatively large 143mW of pump power to start generating in excess of
ten triplets per minute. This prediction does not take into account the task of ensuring phase matching, which with
this dispersion, would require modulating the effective value of χ(3) over the length of the medium with a modulation
period of 29.69µm. This modulations would also decrease the efficiency in the same way that nth-order quasi phase
matching decreases the efficiency by a factor of 4/(π2n2).

Where one cannot periodically pole the nonlinear medium to change the sign of χ(3) one must instead rely on
techniques to create a static modulation of intensity over the nonlinear medium or of modulating the refractive index

(which modulates χ
(3)
eff from Miller’s rule). As an example, if we can modulate the refractive index by 0.01, this will

produce approximately a 17% change in χ
(3)
eff , but will yield a triplet generation rate smaller by a factor of 0.003, or

about a 25dB reduction in the generation rate compared to perfect phase matching. However, alternative media with
tunable properties have been proposed (e.g., hybrid photonic crystal waveguides or periodically tapered fibers)[26, 30]
that offer promising efficiencies.

When a nonlinear medium is strongly driven by a pump laser at high frequency, other processes can occur to
generate light at the down-converted wavelength that are not due to χ(3)-SPDC. In particular, spontaneous (Stokes)
Raman scattering with optical phonons in the medium can in principle create light within the same band as the
down-converted light. This is not the only such confounding process that can occur (e.g., other forms of fluorescence
independent of Raman scattering). As to whether these processes will be a detriment will depend on their brightness
relative to the triplet generation rate. These confounding sources of light are unlikely to generate “dark” triplet
coincidences at intensities measured with single-photon detectors, but they will put an effective cap in input power,
given the maximum detection rate for the photon detectors used.

Approved for Public Release; Distribution Unlimited: PA#: AFRL-2023-2319



11

VII. CONCLUSION

In this work:

• we discussed how to quantify genuine tripartite entanglement in spatial and energy-time degrees of freedom
using correlations naturally present in nonlinear optics without assuming a pure quantum state.

• we derived the triphoton state for third-order SPDC as a source of entangled photon triplets, finding both its
spatial wavefunction, and its joint spectral amplitude

• we analyzed the triphoton wavefunction, and showed that our method can quantify a substantial amount of
tripartite spatial entanglement for these states

• we derived the generation rate of photon triplets in third-order degenerate SPDC to explore how bright these
sources may be.

• we proposed an experiment to measure these spatial correlations in a maximally efficient way that cannot
overestimate the entanglement present.

By developing the methods to better characterize the genuine tripartite entanglement in these rapidly developing
sources, we intend to spur motivation toward new approaches to capitalize on high-dimensional genuine tripartite
entanglement as a resource in quantum information technology.
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[10] Gühne, O. and Tóth, G., “Entanglement detection,” Physics Reports 474(1-6), 1–75 (2009).
[11] Huber, M. and Plesch, M., “Purification of genuine multipartite entanglement,” Phys. Rev. A 83, 062321 (Jun 2011).
[12] Modi, K., Brodutch, A., Cable, H., Paterek, T., and Vedral, V., “The classical-quantum boundary for correlations: Discord

and related measures,” Rev. Mod. Phys. 84, 1655–1707 (Nov 2012).
[13] Schneeloch, J., Tison, C. C., Fanto, M. L., Ray, S., and Alsing, P. M., “Quantifying tripartite entanglement with entropic

correlations,” Phys. Rev. Research 2, 043152 (Oct 2020).
[14] Berta, M., Christandl, M., Colbeck, R., Renes, J. M., and Renner, R., “The uncertainty principle in the presence of

quantum memory,” Nature Physics 6(9), 659 (2010).
[15] Schneeloch, J. and Howland, G. A., “Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen correla-

tions,” Phys. Rev. A 97, 042338 (Sep 2018).

Approved for Public Release; Distribution Unlimited: PA#: AFRL-2023-2319



12

[16] Cover, T. M. and Thomas, J. A., [Elements of Information Theory ], Wiley and Sons, New York, second ed. (2006).
[17] Boyd, R. W., [Nonlinear optics ], Academic press, third ed. (2007).
[18] Schneeloch, J. and Howell, J. C., “Introduction to the transverse spatial correlations in spontaneous parametric down-

conversion through the biphoton birth zone,” Journal of Optics 18(5), 053501 (2016).
[19] Einstein, A., Podolsky, B., and Rosen, N., “Can Quantum-Mechanical Description of Physical Reality Be Considered

Complete?,” Phys. Rev. 47, 777–780 (May 1935).
[20] Mancini, S., Giovannetti, V., Vitali, D., and Tombesi, P., “Entangling macroscopic oscillators exploiting radiation pres-

sure,” Phys. Rev. Lett. 88, 120401 (Mar 2002).
[21] Tomov, I., Van Wonterghem, B., and Rentzepis, P. M., “Third-harmonic generation in barium borate,” Applied op-

tics 31(21), 4172–4174 (1992).
[22] Miyata, K., Petrov, V., and Noack, F., “High-efficiency single-crystal third-harmonic generation in bib3o6,” Optics let-

ters 36(18), 3627–3629 (2011).
[23] Gayer, O., Sacks, Z., Galun, E., and Arie, A., “Temperature and wavelength dependent refractive index equations for

mgo-doped congruent and stoichiometric linbo3,” Applied Physics B 91, 343–348 (2008).
[24] Schneeloch, J., Tison, C. C., Fanto, M. L., Alsing, P. M., and Howland, G. A., “Quantifying entanglement in a 68-billion-

dimensional quantum state space,” Nat. Commun. 10(2785) (2019).
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Appendix A: Proof of entanglement correlation relation

A reduced form of the entanglement correlation relation was proved in [31]:

H(QA : QB) ≤ EF (AB) + S(AB) (A1)

Here, we show how this relation is improved to the form:

H(QA : QB) ≤ EF (AB) + min{S(AB), S(A), S(B)} (A2)

which is tighter in the case of separable, and presumably nearly separable states.
The monotonicity of the relative entropy [32] allows us to assert that the classical correlations quantified by the

Shannon mutual information will always be less than or equal to the quantum mutual information.

H(QA : QB) ≤ I(A : B) (A3)

This is because the classical mutual information can be interpreted as a quantum mutual information after measure-
ments have been performed on the system.

The quantum mutual information itself can be expressed in terms of marginal and conditional entropies:

I(A : B) = S(A)− S(A|B) = S(B)− S(B|A) (A4)

Next, we have that both −S(A|B) and −S(B|A) are lower bounds to the entanglement of formation EF (AB).
Together this gives us the two equations:

I(A : B) ≤ S(A) + EF (AB) (A5a)

I(A : B) ≤ S(B) + EF (AB) (A5b)

Combining these relations with equations (A3) and (A1) gives us the three relations:

H(QA : QB) ≤ EF (AB) + S(AB) (A6a)

H(QA : QB) ≤ EF (AB) + S(A) (A6b)

H(QA : QB) ≤ EF (AB) + S(B) (A6c)

which are readily consolidated into the entanglement-correlation relation used in this paper:

H(QA : QB) ≤ EF (AB) + min{S(AB), S(A), S(B)} (A7)

Appendix B: Derivation of triphoton wavefunction for third-order SPDC

In this Appendix, we show how to derive the triphoton spatial wavefunction in third-order χ(3) SPDC (abbreviated
in subscripts as 3SPDC). To start, we have the hamiltonian for the χ(3)SPDC process:

Ĥ3SPDC =
∑

kp,k1,k2,k3

Gkp,k1k2,k3 âkp â
†
k1
â†k2 â

†
k3

+H.c. (B1)

To obtain the state of the down-converted light, we use first-order time-dependent perturbation theory:

|ψ〉3SPDC ≈
∑

kp,k1,k2,k3

Gkp,k1k2,k3 âkp â
†
k1
â†k2 â

†
k3
|vac〉 (B2)

where factors of i and ~ have been absorbed into G. Since we are only interested in the triphoton wavefunction and not
in the absolute probability of triphoton generation here, many factors will be absorbed into an overall normalization
constant.

The spatially varying components of Gkp,k1k2,k3 are given by:

Gkp,k1k2,k3 ∝
∫
d3r
[
χ

(3)
eff (~r)ei∆

~k·~r
]

(B3)
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where ∆~k ≡ ~k1 + ~k2 + ~k3 − ~kp, and χ
(3)
eff (~r) is the spatially varying effective third order susceptibility, regarded as

constant within the nonlinear medium, and zero outside.
With these approximations, we can begin to express the triphoton state in terms of a triphoton wavefunction:

|ψ〉3SPDC ∝
∑

kp,k1,k2,k3

Ψ(~k1,~k2,~k3)â†k1 â
†
k2
â†k3 |vac〉 (B4a)

Ψ(~k1,~k2,~k3) = N
∑
kp

αkp

( ∏
i=x,y,z

sinc

(
∆kiLi

2

))
(B4b)

where αkp is a coherent state pump amplitude substituting for âkp in the undepleted (classically bright) pump
approximation.

Next, we assume the pump is sufficiently narrowband in frequency that its longitudinal momentum takes on one
value in the sum over kp. In addition we take the small-angle/ paraxial approximation so that the pump amplitude
αkp factors out as a product of a longitudinal amplitude αpz and a transverse amplitude αqp. Together, this gives:

Ψ(~k1,~k2,~k3) = N
∫
dkpxdkpyαqp(~qp) (B5)

×
∏

i=x,y,z

sinc

(
(k1i + k2i + k3i − kpi)Li

2

)
(B6)

Next, we assume the transverse dimensions Lx, Ly of the medium are large enough to completely envelop the
transverse profile of the pump and down-converted light, which in turn, is much larger than the pump wavelength.
Because (Lx, Ly) � λp, we may treat the transverse sinc functions as delta functions, when integrating over the
transverse pump momentum, which also enforces transverse momentum conservation.

Ψ(~k1,~k2,~k3) = N
∫
dkpxdkpyαqp(~qp) (B7)

× sinc

(
(k1z + k2z + k3z − kpz)Lz

2

)
×
∏
i=x,y

δ(k1i + k2i + k3i − kpi) (B8)

To isolate the transverse spatial component of the triphoton wavefunction, we express the longitudinal momen-
tum components in the sinc function in terms of the respective momentum magnitudes and the transverse spatial
components through the Pythagorean formula:

kz =

√
|~k|2 − |~q|2 ≈ |~k| − |~q|

2

2|~k|
(B9)

The approximation comes from the small-angle approximation in which the magnitude of the transverse projection ~q

of the momentum ~k is much smaller than the total magnitude of ~k. Initially, this complicates the sinc function:

Ψ(~k1,~k2,~k3) = N
∫
dkpxdkpyαqp(~qp) (B10)

× sinc

(
(|~k1|+ |~k2|+ |~k3| − |~kp|)Lz

2

−
(
|~q1|2

|~k1|
+
|~q2|2

|~k2|
+
|~q3|2

|~k3|
− |~qp|

2

|~kp|

)
Lz
4

)
×
∏
i=x,y

δ(k1i + k2i + k3i − kpi) (B11)

Following this, we assume the use of narrowband frequency filters to fix the magnitudes of |~k1|, |~k3|, and |~k4|, where

|~kp| has already been fixed in the narrowband pump assumption made earlier. Through optimum phase matching, we
can achieve the condition:

|~k1|+ |~k2|+ |~k3| − |~kp| ≈ 0 (B12)
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greatly simplifying the triphoton wavefunction.
By assuming the pump beam is well-collimated, its transverse momentum amplitude α(~qp) centered at ~qp = 0 will

be narrow enough that we can neglect the sinc function’s dependence on ~qp:

Ψ(~k1,~k2,~k3) = N
∫
dkpxdkpyαqp(~qp) (B13)

× sinc

((
|~q1|2

|~k1|
+
|~q2|2

|~k2|
+
|~q3|2

|~k3|

)
Lz
4

)
×
∏
i=x,y

δ(k1i + k2i + k3i − kpi) (B14)

At this point, we can perform the integration over transverse pump momenta to eliminate the delta functions:

Ψ(~k1,~k2,~k3) ≈ Nαqp(~q1 + ~q2 + ~q3) (B15)

× sinc

((
|~q2 + ~q3 − ~qp|2

|~k1|

+
|~q1 + ~q3 − ~qp|2

|~k2|
+
|~q1 + ~q2 − ~qp|2

|~k3|

)
Lz
4

)
To simplify this wavefunction further, we re-apply the assumption that the pump has sufficiently narrow transverse
momentum bandwidth that dependence on transverse pump momentum can be eliminated from the sinc function:

Ψ(~k1,~k2,~k3) ≈ Nαqp(~q1 + ~q2 + ~q3) (B16)

× sinc

((
|~q2 + ~q3|2

|~k1|
+
|~q1 + ~q3|2

|~k2|
+
|~q1 + ~q2|2

|~k3|

)
Lz
4

)
For our triphoton spatial wavefunction, we assume |~k1| = |~k2| = |~k3| = |~kp|/3, which gives us the final simplified form:

Ψ(~k1,~k2,~k3) ≈ Nαqp(~q1 + ~q2 + ~q3) (B17)

× sinc

((
|~q2 + ~q3|2 + |~q1 + ~q3|2 + |~q1 + ~q2|2

) Lz

4|~k1|

)
Where this wavefunction is approximately separable into horizontal and vertical spatial components, we have the 1D
triphoton wavefunction in rotated coordinates:

ψ(ku, kv, kw) ≈ Nαp(ku
√

3)sinc

(
Lz

4|~k1|

(
4k2
u + k2

v + k2
w

))
(B18)

Among other things, we see that the triphoton wavefunction for a gaussian pump beam is well-approximated by a
triple-gaussian wavefunction.

Appendix C: Derivation of triphoton generation rate for third-order SPDC

From [27], the nonlinear Hamiltonian for third-order Spontaneous Parametric Down-Conversion (SPDC) is given
by:

ĤNL =
1

4

∫
d3r

(
ζ

(3)
ij`m(~r)D̂+

i (~r, t)D̂−j (~r, t)D̂−` (~r, t)D̂−m(~r, t) +H.c.,
)
, (C1)

where repeated coordinate indices are summed over according to the Einstein summation convention. Here: ζ
(3)
ij`m(~r)

is the third-order inverse optical susceptibility tensor of the medium the light is interacting with, and D̂+
i (~r, t) is

the positive frequency component of the electric displacement field operator, such that in the basis of propagating
(Hermite) Gaussian beam modes we have:

D̂+(~r, t) = i
∑
~µ,kz,s

√
ε0n2

kz
~ωkz

2Lz
~εkz,sg~µ(x, y)eikzze−iωtâ~µ,kz,s. (C2)
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In this expression: ε0 is the permittivity of free space; n~k is the index of refraction for a photon of momentum ~p = ~~k,

where we use ~k to index momentum to eliminate extra factors of ~ = h/2π, the quantum of angular momentum. With
this, we point out that the angular frequency of the photon ωk is also indexed by its momentum. In addition: â~µ,kz,s
is the annihilation operator of a photon with transverse spatial mode function g~µ(x, y) indexed by ~µ, longitudinal
momentum indexed by kz and polarization indexed by s, and ~εkz,s is a unit vector in the direction of that polarization.
The field modes are initially defined with respect to a rectangular cavity with volume V = LxLyLz, but the transverse
cavity dimensions disappear upon converting to the basis of transverse gaussian modes. To distinguish the dimensions
of the quantization volume from the dimensions of the nonlinear medium, we let {Lx, Ly, Lz} be the dimensions of
the nonlinear medium.

In this nonlinear-optical Hamiltonian, we are isolating the process of third-order SPDC by considering only terms
where pump photons are annihilated and photon triplets are created (and vise versa). A fuller treatment including
all other interactions of the nonlinear medium with a bright undepleted pump will include the intensity-dependent re-
fractive index (i..e, self-phase modulation) which effects the phase-matching properties of third-order down-conversion
as well. However, we may regard this effect as accounted for in the refractive indices of the medium used to predict
the overall brightness of photon triplet generation. Knowing this, we proceed with the rest of the calculation.

Next, we assume we are using one polarization of the pump, signal, and idler fields, and carry out the summation
over the components of the inverse nonlinear susceptibility ζ(3). We also define ∆kz ≡ k1z + k2z + k3z − kpz and
∆ω ≡ ω1 +ω2 +ω3−ωp. Finally, we assume the pump is bright enough to be treated as an undepleted classical field,
and replace its annihilation operator with a corresponding coherent state amplitude:

ĤNL = 6
∑
kpz

∑
k1z

∑
k2z

∑
k3z

χ
(3)
eff

√
~4ωpω1ω2ω3

16ε20L4
zn

2
pn

2
1n

2
2n

2
3

·
∫
d3r

(
χ̄

(3)
eff (~r)g~µp(x, y)g∗~µ1

(x, y)g∗~µ2
(x, y)g∗~µ3

(x, y)e−i∆kzz
)

· ei∆ωt · α~µp,kpz â
†
~µ1,k1z

â†~µ2,k2z
â†~µ3,k3z

+H.c. (C3)

where here, we use the approximate relation between forward and inverse third-order susceptibilities in a centrosym-
metric medium:

ζ
(3)
eff = −

χ
(3)
eff

ε30n
2
pn

2
1n

2
2n

2
3

. (C4)

and introduce the nonlinearity profile χ̄
(3)
eff that is zero outside the medium and unity (or otherwise modulated) inside

the medium (so that χ
(3)
eff (z) = χ

(3)
eff χ̄

(3)
eff (z)).

Approximating the Hamiltonian as a continuous integral over frequency instead of a discrete sum of momenta by
the relations: ∑

k

â†kâk ≈
∫
dkâ†(k)â(k) ≈

∫
dωâ†(ω)â(ω). (C5a)

â†(ω) ≈
√
Lzng
2πc

â†k (C5b)∑
k1z

≈
(Lz

2π

)ng1
c

∫
dω1, (C5c)

and assuming that the portion of the Hamiltonian
√
ωpω1ω2ω3 is slowly varying enough over the frequency bands

considered that it may be taken as a constant (with their central values) outside the integral, we can obtain the
simplified Hamiltonian:

ĤNL=~

(
3~χ(3)

eff

8π2ε0c2

)√
ng1ng2ng3ngp
n2
pn

2
1n

2
2n

2
3

√
ωp0ω10ω20ω30

∫
dωpdω1dω2dω3α(ωp)Φ(∆kz)e

i∆ωt·â†~µ1
(ω1)â†~µ2

(ω2)â†~µ3
(ω3)+h.c.

(C6)

where

Φ(∆kz) ≡
∫
d3r

(
χ̄

(3)
eff (~r)g~µp(x, y)g∗~µ1

(x, y)g∗~µ2
(x, y)g∗~µ3

(x, y)e−i∆kzz
)
, (C7)
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is an overlap integral decribing the phase-matching of this process.
To find the state of the down-converted triplet, we assume a pump pulse with an average Np photons, so that

α(ωp) = s(ωp)
√
NP (and |s(ωp)|2 integrates to unity), and use first-order time-dependent perturbation theory:

|Ψfinal〉 ≈
(
I− i

~

∫ ∞
−∞

dt′ĤNL(t′)

)
|αp, 0, 0, 0〉 (C8a)

= |αp, 0, 0, 0〉+ |αp,Ψtriplet〉, (C8b)

Where ei∆ωt is the only time-dependent part of the Hamiltonian, integrating over all time produces a Dirac Delta
function δ(∆ω), ensuring energy conservation. If we trace over the pump field, which is independent under our
assumptions, we obtain for the state of the down-converted triplet:

|Ψtriplet〉 =

∫
dω1dω2dω3 ψ(ω1, ω2, ω3) · â†~µ1

(ω1)â†~µ2
(ω2)â†~µ3

(ω3)|0, 0, 0〉. (C9)

where ψ(ω1, ω2, ω3) is the joint spectral amplitude of the photon triplet:

ψ(ω1, ω2, ω3) = −i
√
Np

(
3~χ(3)

eff

4πε0c2

)√
ng1ng2ng3ngp
n2
pn

2
1n

2
2n

2
3

√
ωp0ω10ω20ω30s(ω1 + ω2 + ω3)Φ(∆kz), (C10)

and the overall number of photon triplets 〈Ntriplets〉 can be found through integrating the joint spectral intensity:

〈Ntriplets〉 =

∫
dω1dω2dω3|ψ(ω1, ω2, ω3)|2. (C11)

To simplify the calculation of 〈Ntriplets〉, we focus on the overlap integral Φ(∆kz). Assuming that we are using only

zero-order Gaussian beam modes, and that σ1 = σ2 = σ3 = σp
√

3, the overlap integral simplifies to:

Φ(∆kz) =
Lz√

108πσ2
p

Sinc
(∆kzLz

2

)
(C12)

Expressing ∆kz in terms of frequency is best done in shifted rotated frequency coordinates:

δωu =

√
1

3
(δω1 + δω2 + δω3) (C13a)

δωv = −
√

2

3
δω1 +

√
1

6
δω2 +

√
1

6
δω3 (C13b)

δωw =

√
1

2
(δω2 − δω3) (C13c)

where for example, δω1 = (ω1 − ω10).
Assuming ω10 = ω20 = ω30 = ωp0/3 and a narrow enough bandwidth pump that we may eliminate dependence on

δωu from the phase matching function, we obtain the simplified expression for ∆kz:

∆kz ≈
κ0

2
(δω2

v + δω2
w). (C14)

so that:

〈Ntriplets〉 =
NpL

2
z

σ4
p

~2

5184
√

3π4ε20c
4

ng1ng2ng3ngp
n2
pn

2
1n

2
2n

2
3

(χ
(3)
eff )2ω4

p0

∫
dδωudδωvdδωw|s(δωu)|2Sinc2(

κ0Lz
4

(δω2
v + δω2

w)). (C15)

The integral over δωu is readily done, and the integrals over δωv and δωw are doable in polar coordinates. Ultimately,
this leads us to the formula for 〈Ntriplets〉:

〈Ntriplets〉 =
~2

2592
√

3π2ε20c
4

ng1ng2ng3ngp
n2
pn

2
1n

2
2n

2
3

(χ
(3)
eff )2ω4

p0

|κ0|
NpLz
σ4
p

. (C16)
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To obtain a rate of triplet generation Rtriplets, it is enough to substitute the average pump photon number Np with
the pump photon number rate, which can be expressed in terms of pump power P ≈ ~ωp0Rp:

〈Rtriplets〉 =
~

2592
√

3π2ε20c
4

ng1ng2ng3ngp
n2
pn

2
1n

2
2n

2
3

(χ
(3)
eff )2ω3

p0

|κ0|
PLz
σ4
p

. (C17)

Note: Although we assumed a pump pulse for this derivation, a CW pump beam can be interpreted as a continuous
mixture of pump pulses. Because of this, the number of photon triplets generated is a corresponding continuous sum
of the triplets generated from individual pulses.
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