Water Resources Minor
- RIT /
- Sustainable Campus /
- Academics /
- Water Resources Minor
Overview for Water Resources Minor
The water resources minor broadens the learning experiences and professional opportunities of students in technical disciplines who have an interest in courses related to water treatment, wastewater treatment, hydrology, the environment and society.
Notes about this minor:
- The minor is closed to students majoring in civil engineering technology.
- Posting of the minor on the student’s academic transcript requires a minimum GPA of 2.0 in the minor.
- Notations may appear in the curriculum chart below outlining pre-requisites, co-requisites, and other curriculum requirements (see footnotes).
- At least nine semester credit hours of the minor must consist of specific courses not required by the student’s degree program.
The plan code for Water Resources Minor is TCET-MN.
Curriculum for 2024-2025 for Water Resources Minor
Current Students: See Curriculum Requirements
Course | |
---|---|
Required Courses | |
CVET-250 | Hydraulics A study of the principle physical properties of liquids, hydrostatic pressure and forces, buoyancy and flotation, Bernoulli's Law, Conservation of Energy and Mass, and the concept of momentum. These fundamentals are applied in the analysis and design of closed conduit systems, open channel flow, pumps and pump selection and storage facilities. Rainfall runoff relationships and applications to stormwater management are also introduced. (Prerequisites: CVET-210 or equivalent course. Co-requisites: CVET-251 or equivalent course.) Lecture 3 (Fall). |
CVET-450 | Principles of Water and Wastewater Treatment An introduction to water and wastewater treatment, interpretation of analyzed physical, chemical, and biological aqueous characteristics associated with the design and operation of treatment processes. Fundamental principles and applications of physical, chemical, and biological processes employed in the treatment of drinking water and sanitary wastewater will be covered. Fundamental components and design procedures for gravity sewer systems will be introduced. (Prerequisites: CVET-250 and CVET-251 and (CHMG-122 or CHMG-142) or equivalent courses.) Lecture 3 (Spring). |
CVET-453 | Stormwater Management This course focuses on the fundamental design concepts of surface water hydrology and how these concepts are applied to the management of stormwater for municipal and development projects. Topics include rainfall/runoff relationships, groundwater hydrology, hydrographs, soil erosion and sediment control, storm sewer design, and green infrastructure. Practical engineering procedures, using desktop and state-of-the-practice hydraulic and hydrologic software, are introduced to analyze existing conditions and design new solutions. (Prerequisites: CVET-250 and CVET-251 or equivalent courses.) Lecture 3 (Fall). |
CVET-423 | GIS for CETEMS This course examines the fundamentals of geographic information systems and their application in the fields of civil engineering and environmental management. It emphasizes the application of GIS technology to problems such as, but not limited to, water resource management, asset management, environmental impact assessments, urban planning, and transportation. (Enrollment in this course is restricted to students with at least 3rd year standing in CVET-BS or ESHS-BS.) Lec/Lab 4 (Spring). |
ESHS-360 | Sustainable World Water Supply The World Health Organization estimates that one in eight people do not have access to a safe drinking water supply. The U.S. State Department has stated that armed conflict over water rights is possible on many of the world’s river systems including the Nile, Tigris/Euphrates, Brahmaputra-Jamuna, and Mekong. What is the cause of these problems and how will changes to the hydrologic cycle and world water supply brought about by climate change affect them? Students will learn about the hydrologic cycle, the general characteristics of surface water and groundwater, and global patterns of water use. Students will learn about the health, economic, and social consequences of drought and flooding, and the effect climate change is having on water supply in arid countries. Laws and government regulation of water withdrawal and use will be covered, as will techniques to extend the available water supply. Students will consider the positive and negative consequences of increasing the sustainability of the water supply through efficiency, conservation, inter-basin transfer, water use export, grey and black water reuse, urban runoff capture, and the creation of fresh water through desalination. Lecture 3 (Fall). |