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Abstract—Malicious entities abuse advanced modulation clas-
sification (MC) techniques to launch traffic analysis, selective
jamming, evasion, and poison attacks. Recent studies show
that current defenses against such attacks are static in nature
and vulnerable to persistent adversaries who invest time and
resources into learning the defenses, thereby being able to design
and execute more sophisticated attacks to circumvent them.
In this paper, we present a moving-target defense framework
to support a novel modulation-masking mechanism we develop
against advanced and persistent MC attacks. The modulated
symbols are first masked using small perturbations to make them
appear to an adversary in a state of ambiguity about the model as
if they are from another modulation scheme. By deploying a pool
of deep learning models and perturbation-generating techniques,
our defense strategy keeps changing (moving) them as needed,
making it difficult (cubic time complexity) for adversaries to keep
up with the evolving defense system over time. We show that
the overall system performance remains unaffected under our
technique. We further demonstrate that, over time, a persistent
adversary can learn and eventually circumvent our masking
technique, along with other existing defenses, unless a moving
target defense approach is adopted.

Index Terms—Moving target defense, modulation classification.

I. INTRODUCTION

Digital modulation in wireless communication is used to
convert binary data into analog signals. A transmitter typically
deals with varying channel quality by adjusting the modulation
(and coding) scheme it uses for transmission. As those signals
inherently carry characteristics that reveal the modulation
scheme, adversaries, when unable to obtain this information
directly from the frame header, use modulation classification
(MC) to identify the modulation scheme in order to launch ad-
vanced attacks, e.g., traffic analysis [1], selective jamming [2],
transmitter fingerprinting [3], and breaching user privacy [4].
Moreover, there is a growing concern regarding adversaries
targeting the deep learning (DL) models used in benign MC
techniques, and by extension, their wide civil and military
applications [5]–[11]. These adversaries require knowledge of
the underlying classification parameters to launch disruptive
attacks, including poisoning and evasion, by creating adver-
sarial examples [12]–[15]. It is imperative to develop a robust
defense against a plethora of MC-based attacks.

This paper is the first to focus on efficiently counteracting
the evolving tactics of persistent MC attackers. Existing coun-
termeasures that obfuscate the modulation scheme effectively
circumvent MC attacks for several hundred modulated sym-
bols without relying on encryption [16], but given sufficient

time to analyze long symbol sequences, a persistent adver-
sary can eventually extract the true modulation scheme [17].
Another defense technique involves making controlled per-
turbations, in the complex value of the symbols, that are
designed to mislead the classifier of intruders [18]. However,
adversaries can train DL classifiers to bypass this defense and
abuse the same concept to further reduce the bit error rate
(BER) at the receiver [19]. Other existing defenses are attack-
specific (e.g., evasion and poison attacks) using adversarial
training, in which the defender trains its own DL model with
adversarial examples in advance so that an adversary cannot
mislead it [20], [21]. However, as the defender does not usually
generate adversarial examples using the same perturbation
technique or model as the adversary, the defense is more
likely to fail over time when facing persistent adversaries
capable of repeated evasion and poison attacks [22]. All of
these defense approaches share a common weakness: their
static nature becomes a vulnerability over time, as it provides
attackers ample opportunity to refine their methods.

To prevent a persistent adversary from patiently probing
a static defense mechanism and eventually identifying the
hidden modulation scheme, we hypothesize that a dynamic
defense approach is necessary. Therefore, in this paper, we aim
to answer this question: how can the principles of a dynamic
approach be applied to protect a wireless communication
system from modulation classification attacks without sacrific-
ing the overall system performance? To answer this, we first
propose a technique with negligible BER penalty for masking
the true modulation scheme by adding perturbations to the
modulated symbols to make them appear as if they belong to
another modulation scheme. A deep learning decision function
is used to obtain the amount of perturbations. This effectively
misleads the classification model of an adversary, while the
receiver’s model remains unaffected since it is aware of the
amount of perturbation. However, as we will demonstrate, even
this mechanism can be compromised over time under a gray-
box scenario against a persistent attacker.

Therefore, on top of this base, we develop a moving target
defense (MTD) strategy as a proactive defense. The funda-
mental concept behind MTD is to continuously modify the
attack surface by changing the attributes of a system, forcing
attackers to frequently restart their learning attempts in case a
given technique is not robust against persistent attackers [23].

In our proposed MTD against Modulation Classification At-
tacks (MTD-MCA) framework, we consider a pool of trained



DL models (neural networks of various layers) for the intended
receivers to classify the modulation schemes along with several
perturbation-generating algorithms we use to generate adver-
sarial examples for our masking technique. The pool is shared
securely between the transmitter and receiver once. Each time,
a different pair of model and perturbation algorithm is selected
for a bounded time to ensure that repeated attacks consistently
fail, after which the system moves to the next model and
algorithm. Put differently, before a persistent adversary can
collect enough masked traffic and meticulously learn the
operating learning model, the transmitter will have already
switched to an alternative model and perturbation technique.
After a certain period, the deployed model pool expires and
is seamlessly replaced by a new set of pre-generated models.

To this end, we also design two key components of an
MTD-based approach: how and when to move the target (the
pair). To do that, we introduce a Selector and a Scheduler
into our framework. Our Selector bootstraps by generating
multiple random samples from our pool of learning models
and perturbation algorithms, evaluating these combinations,
and then selecting the best pair based on the aggregated
results. Next, the Scheduler uses a random walk approach
by transitioning probabilities between time steps to select the
next time step to move. To communicate the chosen model and
the perturbation algorithm to the receiver, each combination is
assigned a unique ID, and the transmitter sends this ID over
the preamble (for backward compatibility) or a header field,
similar to having a Modulation and Coding Scheme (MCS)
index in the plaintext header. The ID allows the receiver
to uniquely identify the specific combination of the learning
model and perturbation algorithm used for the transmitted data.
The receiver, being aware of the chosen combination, will be
able to discern the true modulation scheme. As a result, it can
achieve an equivalent BER performance compared to a system
without any defense mechanism in place.

Contributions— Our main contributions are as follows:
• We develop a novel modulation masking technique that

employs an adversarial examples approach for perturba-
tion generation, concealing the true modulation scheme of
transmitted symbols to appear as a different but specified
modulation scheme. Our rigorous evaluations through
simulation demonstrate that it maintains the same BER
as a system lacking any defense mechanism under a wide
range of signal-to-noise ratio (SNR) levels.

• We design MTD-MCA on top of our perturbation-based
masking technique to prevent persistent attackers from
learning and circumventing the masking defense by con-
tinuously modifying system attributes to keep adversaries
at bay. By treating the decision function of learning
models and perturbation-generating algorithms as moving
targets, MTD-MCA significantly increases the complex-
ity for persistent adversaries (now cubic in time) to learn
system patterns and launch successful attacks.

• Our evaluation results further show that MTD-MCA
significantly mitigates the effectiveness of modulation
classification attacks, with the strongest attacker achiev-

ing no more than approximately 40% success rate.
Paper Outline— We provide the preliminaries to understand

the rest of the paper in Section II and the system model
in Section III. Sections IV and V discuss and evaluate our
proposed defense, respectively. We discuss related work in
Section VI before concluding the paper in Section VII.

II. PRELIMINARIES

For a coherent discussion, we first provide a brief overview
of modulation classification, adversarial examples in DL, and
the principles of moving target defense. Table I lists the
important notations with their meanings for this section.

A. Modulation Classification

In a system where the receiver cannot use the conventional
means of learning about the modulation type (e.g., when the
headers are encrypted or undecodable, the communication
protocol is unknown (like in a war zone), or there is no such
field in the header), it applies MC to identify the modulation
scheme. Let X denote the received modulated signal samples
defined as X = (Xi, yi) : i ∈ {1, . . . N}, where Xi represents
a series of d symbols and yi ∈ {1, . . .mc} denotes its
modulation scheme (mc is the dimension of the output space,
i.e., the number of classes/modulation schemes in the system).

B. Adversarial Examples

Adversarial examples are specially crafted signals designed
to cause an ML/DL system to make incorrect decisions or
behave unexpectedly. These adversarial examples can lead to
communication errors, interference, and compromise of the
integrity, confidentiality, and availability in wireless networks
and their associated devices [12]–[15]. In this paper, we utilize
adversarial examples for a different purpose—to mask the true
modulation scheme to defend against MC attacks.

In the MC domain, adversarial examples are generated
by introducing perturbations to the modulated symbols. The
amount of perturbation is influenced by the specific char-
acteristics of the classification model and the perturbation-
generating algorithm (see below). When training the model by
updating its parameters, denoted by θ, the primary objective is
to minimize the expected loss1 L(.) across all (Xi, yi) pairs.
This objective is mathematically expressed as:

min
θ

1

N

N∑
i=1

L(θ,Xi, yi). (1)

The optimal solution to this loss minimization problem
generally leverages an optimization algorithm (e.g., stochastic
gradient descent (SGD)). It iteratively updates the model
parameters θ following the gradient of the loss with learning
rate η and batch size b, formally denoted as ∇θ, as follows:

θt = θt−1 −∇θt−1 ·
η

b

b∑
i=1

L(θt−1, Xi, yi). (2)

1The loss function measures the discrepancy between predicted outputs and
the actual labels in the training data to minimize the classification error.



The objective of the learning model at the receiver is to per-
form the mapping fθ : X → y. The output of fθ for each Xi is
an mc-dimensional vector, and each dimension represents the
likelihood of input belonging to the corresponding modulation
scheme. Suppose d = 1. The decision function fθ(xi) maps
an input symbol xi ∈ X to a class label yi that exhibits the
highest likelihood. Then, x′

i = xi + δ is called an adversarial
example with perturbation δ if: fθ(x

′
i) = y′i ̸= ytrue and

||δ|| < δmax, where ytrue is the ground truth, ||.|| is a distance
metric, and δmax is the maximum allowable perturbation that
preserves the semantic integrity of x. Semantic integrity is
domain- and/or task-specific. In our problem, each x′

i must ap-
pear to belong to a modulation class that the system supports.
Among many existing perturbation-generating algorithms, the
following are a few that we use and customize in this paper.

1) Projected Gradient Descent (PGD): This algorithm is
an iterative optimization method used to generate adversarial
examples [24]. In our problem, it applies small step-wise
perturbations to the input signal in the direction that maximizes
the model’s loss, aiming to find a perturbation δ required to
cause misclassification.

δ(t) = Clipδmax

(
δ(t−1) + α · sign(∇θL(θ, xi, ytrue))

)
(3)

where α is the step size, t is the iteration index, Clipδmax
is a

function that clips the perturbation to ensure it stays within the
allowed maximum perturbation budget, and∇θL(θ,X, ytrue) is
the gradient of the loss with respect to the model’s parameters.

2) DeepFool: DeepFool is an adversarial attack algorithm
that finds adversarial perturbations by linearizing the decision
boundary of the classification model [25]. It iteratively moves
the input signal in the direction of the nearest linear boundary
of the model until misclassification is achieved. The δ gener-
ation for DeepFool can be approximated as follows:

δ(t) = − fθ(x
(t)
i )

||∇xifθ(x
(t)
i )||22

∇xi
fθ(x

(t)
i ) (4)

where ||δ||2 denotes the L2 norm of the perturbation.
3) Momentum Iterative Method (MIM): It is a variant of

the PGD algorithm that introduces momentum into the pertur-
bation update process [26]. It accumulates past perturbations
to have a smoother update direction, which can lead to faster
convergence. The δ generation for MIM can be expressed as:

r(t) = µ · r(t−1) +
∇θL(θ, xi, ytrue)

||∇θL(θ, xi, ytrue)||1
δ(t) = Clipδmax

(
δ(t−1) + α · sign(r(t))

) (5)

where r is the momentum and µ is the momentum factor.
4) Basic Iterative Method (BIM): This is another variant of

the PGD algorithm that performs multiple iterations of small
perturbations to generate adversarial examples [27]. It aims
to increase the confidence of misclassification over iterations.
The δ generation for BIM can be expressed as:

TABLE I
IMPORTANT NOTATIONS USED IN THE PRELIMINARIES.

Notation Definition
X Batch of modulated signals Xi

d Number of symbols in Xi

N Total number of labeled batches Xi

f(.) Learning model’s decision function
y Predicted modulation scheme (label) of the signal Xi by f(.)
mc Number of modulation schemes supported by the system
θ Learning model parameters (decision boundary)
t Iteration index
η Learning rate

L(.) Loss function
x′ Adversarial example of input signal x
y′ Predicted label of x′ by f(.)
δ Perturbation amount

δmax Maximum allowable perturbation
α Step size for perturbation algorithms

δ(t) = Clipδmax

(
δ(t−1) + α · sign(∇θL(θ, xi + δ(t−1), ytrue))

)
(6)

5) NewtonFool: The NewtonFool method perturbs an input
sample to cross the classifier’s decision boundary, thereby
altering the classifier’s output [28]. Each iteration updates the
input sample X by adding a small perturbation δ, which is
aligned with the direction of the classifier’s decision boundary
at that sample:

δ(t) = δ(t−1) − η · ∇δ(t−1)L(f(δ(t−1), ytrue))

||∇δ(t−1)L(f(δ(t−1), ytrue))||22
(7)

C. Moving Target Defense (MTD)
MTD is a proactive and dynamic defense strategy that

aims at increasing the adversary’s uncertainty and effort by
dynamically changing (moving) the attack surface. Hence,
this strategy makes the adversary unable to take their time to
learn about and eventually break the target system. MTD was
originally developed for the detection and prevention of cyber-
intrusion attacks as a part of the Intelligence Driven Defense®
model [29], but it is also applied in other domains, such as
denial-of-service (DoS) attacks [30] and data exfiltration [31].

MTD has three key elements that determine the strategy
and implementation of this technique: what to move, when to
move, and how to move [32]–[35]. What refers to the elements
of the system that will be moved in response to a detected
threat before it occurs, such as IP addresses, port assignments,
file system layouts, virtual machines, software components,
etc. [32], [36]. When refers to the timing and frequency of the
changes to the elements of the system. These changes may
be triggered in response to a detected threat, or they may be
executed on a predetermined schedule to proactively prevent
attacks. Finally, how indicates the specific techniques to move
the target elements. The choice of what, when, and how to
move in an MTD framework will depend on the specific needs
and requirements of the problem space and the nature of the
security threats. An effective MTD framework must be able
to adapt to changing threats and make decisions about what,
when, and how to move in real time, to provide a dynamic
and effective cyber defense.



III. SYSTEM & ADVERSARY MODEL

We consider a typical wireless communication system com-
prising a transmitter and a receiver that adapt their transmis-
sion rate based on the quality of the channel. The receiver
may train a DL classifier to identify the modulation scheme
of incoming signals more efficiently than alternative methods.

In this system, we assume the adversary operates from a
gray-box perspective. This implies that the adversary might be
aware of the general system configurations (e.g., protocol and
supported modulation schemes) and the defense mechanisms
(e.g., the overall strategy and algorithms). However, they are
not privy to the secrets and specific details of the MTD
strategies, such as the exact timing and nature of the changes in
system configurations or classification parameters. We assume
the persistent adversary to be tenacious and adaptive, demon-
strating a willingness to invest significant effort in under-
standing the configurations and parameters while continuously
probing the defense mechanisms.

The adversary’s primary goal is to accurately identify the
true modulation scheme. To achieve this, it can create a substi-
tute learning model that meticulously mirrors the behavior of
the actual system. This is accomplished by observing the sys-
tem’s traffic and iteratively refining the substitute model. This
process involves multiple attempts and interactions with the
system to gather information and adapt its model over time.

IV. PROPOSED MOVING TARGET DEFENSE AGAINST
MODULATION CLASSIFICATION ATTACKS

We first propose our modulation-masking technique to con-
ceal the true modulation scheme from adversaries. We achieve
this by adding perturbations to the modulated symbols, making
them appear as if they belong to another modulation scheme.
For the simplicity of exposition, we begin with a system
involving a single model and a single perturbation algorithm,
which we call fixed target defense against MC attacks (FTD-
MCA). Next, we build upon this foundation by integrating our
moving target defense strategy, leading to the development
of our proposed framework, MTD-MCA. Table II lists the
important notations used in this section.

A. Fixed Target Defense against MC Attacks (FTD-MCA)

To hide the true modulation scheme from an unintended
receiver, we mask modulated symbols by adding perturbations
obtained using a learning decision function. This involves
generating a vector in the input feature space (the IQ values)
to effectively mislead the adversary’s classification model in
a state of ambiguity about that learning model.

Unlike other domains (e.g., image classification), where
each element might have a different label, in our context,
all d > 1 symbols in Xi (e.g., symbols in a single wireless
frame) are modulated using the same scheme. Accordingly,
we customize the perturbation generation methods (3)-(7)
by replacing xi with Xi. This modification ensures that the
perturbations are consistent with the modulation scheme of
the entire signal, rather than varying across different symbols.

Fig. 1. Illustrative example of a targeted perturbation using PGD, where
multiple BPSK symbols at (1,0) are perturbed to fall within a model-specific
QPSK decision boundary, outside that of 16-QAM symbols, where minimum
and maximum I/Q perturbation budgets (δmax) are set based on that boundary.

We also modify the perturbation generation methods to
allow all of the symbols in Xi masked by a specific, higher
modulation scheme, denoted by ysp. The perturbation amount
is based on the distance between the model’s decision bound-
ary (θtsp) and that of the true modulation scheme, ytrue, and
the specified one (ysp). In the following, we show the modified
equation of PGD. Likewise, we modify the rest of the (3)-(7).

δ(t) = Clipδmax

(
δ(t−1) + α · sign

(
∇θtspL(θtsp, Xi, ytrue)

))
(8)

Fig. 1 illustrates an example of our strategy. Suppose ytrue is
BPSK and the system supports two more modulation schemes,
namely, QPSK and 16-QAM. For a BPSK symbol originally
at (1, 0), targeted perturbation is applied to steer it towards
the ysp model’s decision boundary for ysp, that is QPSK in
this example. Without targeting, the perturbation could shift
the symbol towards either a QPSK or 16-QAM demodulation
decision boundary within the clipped range of [−1, 1] on both
axes. The receiver first addresses noise or channel impact
elimination, then reverses the known perturbation, and subse-
quently demodulates the BPSK symbols in a manner consistent
with regular system operations under any given SNR level.

B. Moving Target Defense against MC Attacks (MTD-MCA)

Our proposed framework contains three key components:
what, how, and when. The what component represents the
target that MTD-MCA moves, and it is a tuple τ (f, p), where
f is the model’s decision function and p is a perturbation
algorithm. We consider a pool of models (that can include
any type of layers, such as transformers, convolutional, fusion,
etc.) and a pool of perturbation-generating algorithms such as
the five algorithms defined above. Our how component is the
Selector, which decides the target using randomization. The
third component is the Scheduler, which decides when to move
the target. This dynamic approach introduces unpredictability
into the timing of target movements, enhancing the effective-
ness of the MTD strategy by making it difficult for potential
adversaries to anticipate when the target will be switched.



Fig. 2. Proposed MTD-MCA framework: what, how, and when to move.

1) Communicating the operating target: In the proposed
system, a table containing the combinations of models and
perturbation algorithms is generated by a Selector (discussed
in the following subsection IV-B3), where each combination is
assigned a unique ID. The decision functions of the combina-
tions are securely pre-shared with the transmitter and receiver.
The transmitter uses the plaintext ID of the chosen target
and embeds it in the preamble using, e.g., the embedding
technique in [37] (for backwards compatibility) or in the frame
headers. This approach is similar to indicating a Modulation
and Coding Scheme (MCS) index in the physical-layer header.

In our case, the transmitter needs to communicate the unique
ID of the specific combination used for a given frame to the
receiver. For m models and s perturbation algorithms, the
systems need s ×m number of unique IDs. For the number
of bits needed to represent the combination ID, we need
⌈log2(s×m)⌉ bits. It allows creating pools consisting of 24 to
216 combinations. By regularly renewing the pools with totally
new sets of models and perturbation algorithms, the system
gains an inherent level of uncertainty, making it much more
difficult for an adversary to associate any ID with a pattern.

2) What to move: Instead of using a single fixed target
model, the MTD-MCA framework utilizes a pool of m mod-
els (f1, f2, ..., fm) and s perturbation-generating algorithms
(p1, p2, ..., ps). MTD-MCA randomly selects a model and a
perturbation-generating algorithm pair from the pool to per-
turb the modulated symbols and conceal the true modulation
scheme before transmission. The receiver identifies the chosen
fi and pj using the ID and uses it to remove the perturbations
applied by the transmitter. This step enables the retrieval of the
true modulation scheme of the received symbols, facilitating
the subsequent demodulation process.

3) How to move: The Selector operates within two sub-
pools: one containing various models, and the other containing
perturbation algorithms. It employs bootstrapping techniques,
a resampling method widely used in statistics and machine
learning, to make well-informed decisions.

Using bootstrapping, the Selector creates multiple random
samples from the pools of learning models, denoted by F
(f represents a specific learning model), and perturbation
algorithms, denoted by P (p represents a specific perturbation
algorithm). Let Si denote the ith sample, where each sample
consists of a combination of learning models and perturbation

TABLE II
NOTATIONS USED TO FORMULATE THE PROPOSED SCHEME.

Notation Definition
τ Tuple representing the target in MTD-MCA.
F Pool of learning models.
P Pool of perturbation-generating algorithms.
fi Learning model from F .
pi Perturbation-generating algorithm from P .

Ψ(Si) Performance metric from the i-th sample.
Si i-th sample with learning model and perturbation.
S∗ Chosen target with the highest performance.
T Set of discrete time steps {t1, t2, . . . , tn}.
Pr Transition probability matrix for the scheduler.
tcur Current time step in the scheduler’s decision-making.
tnext Next time step randomly selected by the scheduler.
tk Time step when the target’s movement is scheduled.

algorithms:

Si = {(fi1, pi1), (fi2, pi2), ..., (fij , pij)} (9)

where (fij , pij) represents the jth combination of a learning
model fij and a perturbation algorithm pij in the ith sample.

The Selector then evaluates the performance of the system
using these combinations. Let Ψ(Si) represent the perfor-
mance metric obtained from the ith sample Si. The goal is to
identify the combination that demonstrates the highest overall
performance or meets specified optimization criteria. This can
be achieved by aggregating and analyzing the performance
metrics obtained from each sample:

Ψ(S) = Ψ(S1),Ψ(S2), ...,Ψ(Sn) (10)

where Ψ(S) is the set of performance metrics from all
n samples. The final step is to select the best-performing
combination based on the aggregated performance metrics. Let
S∗ represent the sample with the highest overall performance:

S∗ = argmax
Si∈S

Ψ(Si) (11)

The combination in S∗, denoted as (f∗, p∗), is the chosen
target for the system. The steps are outlined in Algorithm 1.
The overall time complexity of the algorithm is O(n).

4) When to move: The scheduler operates using discrete
time steps represented as T = t1, t2, . . . , tn, where n is the
number of time steps. A transition probability matrix Pr
defines the likelihood of transitioning from one time step
ti to another tj in a random walk scenario, subject to the
condition that the probabilities satisfy

∑
Pr(i, j) = 1,∀i. The

scheduler’s decision-making process involves a current time
step tcur, initially set to t1, and a random selection procedure
based on transition probabilities to determine the next time
step tnext. To achieve this, the scheduler randomly selects a
time step tj from T using Pr(tcur, tj). The random selection
process is repeated for M iterations (i.e., time steps), leading
the scheduler to a specific time step tk. Subsequently, the
target’s movement is scheduled to occur after M frames. The
steps are outlined in Algorithm 2. The overall time complexity
of the algorithm, dominated by the for-loop, is O(M).



Algorithm 1: Selector with Bootstrapping
Input: F , P
Output: (f∗, p∗)
Initialize: S0 ← ∅

1 for i← 1 to n do
2 Randomly select (fij , pij) from F ×P to form Si;
3 end
4 for i← 1 to n do
5 Evaluate Ψ(Si) for each sample Si;
6 end
7 S∗ ← argmaxSi∈S Ψ(Si);

Algorithm 2: Scheduler with Random Walk
Input: T, Pr
Output: tk
Initialize: tcur ← t1

1 for i← 1 to M do
2 Randomly select tnext from T using Pr(tcur, tnext);
3 tcur ← tnext;
4 end
5 tk ← tcur;

C. Computational Complexity: Defender versus Attacker

In FTD-MCA or any fixed target defense mechanism, let’s
denote the attacker’s complexity to compromise the system by
O(ta) (ta is defined as the amount of time for an adversary
to break a system with single, fixed defense). Conversely, our
MTD-MCA approach significantly increases this complexity
by dynamically altering both the decision function and the
perturbation algorithm across m models and s perturbation
algorithms at discrete intervals, leading to a non-linear increase
in the attacker’s adaptation complexity. The time complexity
for the attacker in MTD-MCA is approximately O(m×s×ta).
This elevates the time complexity to cubic, substantially higher
than the linear complexity of O(ta) in MTD-MCA, prolonging
the time required for an adversary to adapt effectively, thereby
enhancing the system’s security.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed modulation
masking technique and assess the defense strength of FTD-
MCA and MTD-MCA when facing a persistent attacker.
We implemented our framework, including the Selector and
Scheduler, the neural network models, and the perturbation-
generating algorithms defined in Section IV using KERAS as
the front-end and TENSORFLOW as the back-end in Python.

A. Dataset & Metrics

The data is generated using MATLAB COMMUNICATIONS
TOOLBOX™ and includes four standard baseband modulation
schemes: BPSK, QPSK, 16-QAM, and 64-QAM. This dataset
contains a balanced set of 500, 000 signals. It is then divided
into two halves, one for evaluating the proposed technique by
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Fig. 3. BER performance of different modulation schemes under various SNR
levels, where (x) represents a masked modulation scheme as 64-QAM. The
results demonstrate that the BER is nearly the same as the system without
any masking (shown as dotted lines).

a defender and the other for the adversary, enabling a defense
assessment analysis. To make sure neither dataset is biased
against or in favor of the defender/adversary, we switch the
datasets and achieve comparable results.

To evaluate the proposed modulation masking techniques
proposed in Section IV, we utilize the defender’s dataset to
generate modulation-masked symbols. These masked symbols,
along with the original modulated symbols, are transmitted
over an additive white Gaussian noise (AWGN) channel with
varying SNR levels ranging from −20 dB to 20 dB. The
attacker dataset undergoes the same process. For reliable
evaluation, each experiment is repeated 1, 000 times, and the
results presented here are the averages of those repetitions.

Both datasets are further divided into training (70%), val-
idation (10%), and testing (20%) set to accurately train and
validate the proposed techniques. We assess the performances
based on BER under various SNR levels, and collected metrics
including accuracy, loss, F1-score, and confusion matrices.

B. Models & Perturbation-generating Algorithms

To evaluate the performance of our proposed system, we be-
gin by creating a diverse pool of convolutional neural network
(CNN) models and perturbation algorithms. Hyperparameter
tuning is employed to identify the top-performing models
based on their performance metrics to select the models for this
pool. The size of the model pool can be of any number. To
select and train multiple models cost-effectively, knowledge
distillation2 [38] can be applied as well. After the tuning
process, we select the five best-performing models to evaluate
the MTD-MCA’s assessment against repeated attacks (details
in the subsections V-C and V-D). The pool of these five models
and five perturbation techniques are presented in Table III. The
table outlines the key characteristics of each model, providing
an overview of their architectures and configurations. Our
model takes the received symbols as input and returns the
class (i.e., modulation scheme).

2A technique where a complex “teacher” model trains simpler “student”
models to replicate its performance efficiently at a much lower training cost.



TABLE III
THE POOL OF MODELS AND PERTURBATION-GENERATING ALGORITHMS WE CONSIDERED IN THE USE-CASE.

Model Pool
Parameters f1 f2 f3 f4 f5
Optimizer RMSprop SGD SGD SGD SGD
Learning Rate 0.1 0.1 0.1 0.01 0.01
Momentum 0.1 0.2 0.2 0.6 0.6
Batch size 32 32 32 32 32
Activation LReLU ELU ELU ELU ELU
Filter number 24, 58 80, 118 22, 36 64, 26 30, 68
Kernel size 2, 8 4, 6 2, 10 2, 4 4, 2
MaxPool size 6, 2 6, 4 6, 4 4, 2 6, 6
Dropout rate 0.2, 0.4 0.1, 0.1 0.2, 0.1 0.3, 0.4 0, 0
Trainable param. 29810 113726 10866 19874 11962

Main Structure of the Models in the Pool

Perturbation Generator Pool
Perturbation p1 p2 p3 p4 p5
Algorithms PGD DeepFool MIM BIM NewtonFool

(a) Without any masking. (b) Masked as 64-QAM.

Fig. 4. Confusion matrix comparison between a system without any masking
applied with the proposed MTD-MCA. Despite the true modulation schemes
being masked as QPSK, the receiver effectively removed the amount of
perturbation and accurately identified the correct modulation scheme.

C. System Performance at the Intended Receiver

We now investigate the impact of masking on the mod-
ulation classification accuracy and BER performance under
various SNR levels. The results showcase the effectiveness of
the proposed work by comparing the system’s performance
without any masking against the results achieved with our
proposed technique.

Fig. 3 highlights BER across three modulation schemes:
BPSK, QPSK, and 16-QAM. As the SNR increases, the BER
shows a decrease for all modulation schemes and closely ap-
proaches the performance of the system without any masking,
as indicated by the dotted lines.

Fig. 4 showcases a comparison of confusion matrices be-
tween two systems: one without any masking applied and
the other with the proposed MTD-MCA. The confusion ma-
trix highlights the effectiveness of the receiver in accurately
identifying the correct modulation scheme, even when the
true modulation schemes were masked as 64-QAM. Despite
the presence of perturbations, the receiver efficiently removed
them, leading to precise and reliable modulation scheme
identification. This result demonstrates the potential of the
MTD-MCA approach in enhancing modulation recognition in
wireless communication systems.

D. Defense Performance against Attacks

For brevity, we focus on a specific use case where the
defender’s pool consists of five models and five perturba-
tion algorithms in the MTD-MCA scenario. The persistent
attacker’s objective is to target both the FTD-MCA and MTD-
MCA systems with repeated attempts, carefully analyzing the
outcome of each attempt to refine their attack approach. In this
assessment, multiple attack attempts, coupled with the various
models and perturbation algorithms considered in both attack
scenarios, make the assessment representative and reflective
of a wide range of potential scenarios, making it applicable to
generic use cases.

1) Attack Attempts against FTD-MCA: For the FTD-MCA
assessment, we consider every combination of five models and



(a) First attack attempt. (b) Intermediate attack attempt. (c) Continued attack attempt. (d) Final attack attempt.

Fig. 5. Persistent adversary’s attack performance over time in identifying the true modulation scheme under FTD-MCA.

(a) Initial attack attempt. (b) Intermediate (but stagnant) attempt. (c) Continued (but stagnant) attempt. (d) Final (and still stagnant) attempt.

Fig. 6. Persistent adversary’s attack performance over attempts in identifying the true modulation scheme under MTD-MCA.

the five perturbation algorithms (fi and pj) from Table III and
report the average scores in Fig. 7.

For the first attempt against the FTD-MCA system, the
attacker selects a long short-term memory (LSTM) model,
leveraging its ability to process entire sequences of data at
once. Unfortunately for the attacker, this initial attempt, as
shown in Fig. 5(a), turns out to be a complete failure.

Analyzing the results, the persistent attacker decides to
change their strategy entirely instead of refining the same
model. For the next attempt, they opt for a one-layer two-
dimensional CNN model. One of the outcomes of this in-
termediate attempt (Fig. 5(b)) shows some progress for the
attacker, motivating them to refine their models further. They
add another layer of convolution to improve their approach.
One of the continuations of the attempts, presented in Fig. 5(c),
reflects even more success for the attacker. However, despite
the two-layer convolutional model, the attacker observes that
the performance is still not satisfactory. As a result, they decide
to refine their approach once again, this time by considering
adversarial examples and incorporating them during model
training. In the final attempt, illustrated in Fig. 5(d), the per-
sistent attacker achieves 100% success in their attacks against
the FTD-MCA system. The iterative refinement process and
the incorporation of adversarial examples have allowed the
attacker to overcome the defenses and successfully compro-
mise the system. Throughout this assessment, the attacker’s
persistent approach, coupled with their adaptability in chang-
ing model architectures and refining strategies, demonstrates
the importance of robust and effective defense mechanisms to
thwart persistent attackers.

2) Attack Attempts against MTD-MCA: For this assess-
ment, we consider every combination of five models and the
five perturbation algorithms (fi and pj) from Table III and

report the average scores in Fig. 7. For illustration purposes,
we provide details of one use case in the following.

In the assessment of the MTD-MCA system, we consider
that the persistent attacker initiates their attempt with a two-
dimensional CNN equipped with a single convolutional layer.
The attacker collected data to attack the MTD-MCA sys-
tem when its target was the (f5, p2) pair. As depicted in
Fig. 6(a), the initial attack achieves only around 38% success
in overall accuracy. Analyzing the results, the attacker decides
to enhance their approach by considering the use of two
convolutional layers. However, during this time, the MTD-
MCA system shifts its target to the (f4, p5) pair. In the
subsequent attempt, shown in Fig. 6(b), the attacker’s success
rate remains approximately 40% in overall accuracy. Before
the next attack, the attacker incorporates adversarial examples
and trains their model accordingly. By the time they refine their
model for the third attack, the MTD-MCA system’s target has
shifted to the (f3, p4) pair. The attacker continues refining their
approach, adding a third layer of convolution, and training with
adversarial examples. In the fourth attempt with (f2, p3) pair,
depicted in Fig. 6(d), the attacker’s success rate remains at
approximately 40%. Throughout these attempts, the attacker’s
accuracy does not exceed 40%, showcasing the efficacy of our
MTD-MCA approach in defending against persistent attacks.
The MTD-MCA system effectively adapts its target features
and perturbation strategies, making it challenging for the
attacker to devise a successful and consistent attack.

We compare the defense strength of both systems in terms of
attack performance, specifically focusing on accuracy and F1
score. The results are depicted in Fig.7. While FTD-MCA’s
accuracy and F1-score gradually degrade due to its static
nature, MTD-MCA’s dynamic adaptation proves to be highly
effective in mitigating the threat. Since the adversary fails to
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Fig. 7. Attack performance– initial (a1), intermediate (a2), continued (a3),
and final (a4) attempts.

discern the underlying classification parameters of the system,
they are unable to launch other disruptive attacks such as
poisoning and evasion attacks.

VI. RELATED WORK

A. Defenses against Modulation Classification Attacks

To prevent an adversary from identifying the modulation
order, some works proposed modulation concealment tech-
niques [16], [39] to circumvent MC without hampering the
quality of communication with its intended receiver.

In modulation obfuscation, symbols are camouflaged in the
constellation map of the highest-order modulation scheme to
conceal the true modulation order using a secret sequence
known only to the intended receiver [16], making statistical
MC approaches ineffective for MC and preventing traffic
analysis attacks [40]. However, as indicated in [17], persistent
adversaries can eventually discern the true modulation scheme.
If we use this approach as the basis to apply MTD by
alternating between two or more secret sequences, it may delay
adversary learning, it ultimately does not prevent it due to the
underlying same obfuscation method, allowing adversaries to
adapt with more complex models like long learning memory
systems (LLMS) to extract the unique patterns of each mod-
ulation scheme over longer series of symbols.

In [18], minimum perturbations are added to the transmitted
signal to reduce classification accuracy at the intruder while
maintaining a low BER at the intended receiver with an
assumption that the transmitter knows the intruder’s model,
channel, and location. However, the authors in [19] show that
adversaries can counter this defense over time. If we use MTD
on top of this approach by varying perturbation amounts, it will
primarily increase the computational load without significantly
hindering an adversary’s adaptability because the perturbations
must remain minimal to maintain a low BER at the receiver.

B. Adversarial Examples in Wireless Communications

Adversarial examples pose significant challenges in wire-
less communications, as demonstrated by several studies.
Davaslioglu et al. introduced a Trojan attack in a wireless
signal classifying system, where a slight manipulation in
the training data inserts Trojans by changing sample labels

to a target label [13]. Bahramali et al. utilized universal
adversarial perturbations (UAP) in a black-box scenario to
generate perturbations on a proxy model and then used them
to attack the target classification model [41]. Meanwhile, Shi
et al. proposed a spectrum data poisoning attack, enabling the
adversary to infer the transmitter’s activity [42].

C. Moving Target Defense Approaches

Multiple research papers have highlighted MTD as a proac-
tive defense strategy in different domains. For instance, Zhang
et al. [43] demonstrated MTD’s ability to counter false data
injection attacks in power grids by dynamically adjusting
branch susceptances to minimize attack opportunities. The
paper [44] introduced a secure hardware architecture that
employed ensembles of moving target defenses and churn
to continuously obfuscate sensitive information, such as code
and pointer representations, effectively thwarting control-flow
attacks. In [36], a MTD strategy was applied to enhance
the security of deep learning-based visual sensing against
adversarial example attacks by generating multiple new deep
models after deployment.

VII. CONCLUSION

In this paper, we tackled the challenge of defending wireless
communication systems against MC attacks through a proac-
tive and dynamic defense strategy following MTD principles.
Our proposed strategy, MTD-MCA, includes a modulation-
masking technique using adversarial examples to conceal the
true modulation scheme. The defense continuously modifies
system attributes, treating the decision function and perturba-
tion algorithms as moving targets, making it computationally
expensive (cubic time complexity) for persistent attackers to
learn system patterns and launch successful attacks. Extensive
simulations demonstrate that MTD-MCA effectively maintains
the same BER as a system without defense mechanisms across
varying SNR and significantly mitigates the effectiveness of
MC attacks, with the strongest attack achieving no more than
40% success rate.

For future work, we aim to explore other channel models
and conduct over-the-air experiments to gain insights into
the performance and robustness of the MTD-MCA defense
strategy in real-world scenarios.
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