Bob Carter Headshot

Bob Carter

Senior Lecturer

Department of Mechanical Engineering
Kate Gleason College of Engineering
Associate Department Head

585-475-7098
Office Location
Office Mailing Address
76 Lomb Memorial Dr., bldg 9, rm 2125

Bob Carter

Senior Lecturer

Department of Mechanical Engineering
Kate Gleason College of Engineering
Associate Department Head

Education

BS, University of Maine; Ph.D., Cornell University

Bio

Dr. Robert Carter received his B.S. in Chemical Engineering from the University of Maine and his Ph.D. in Chemical Engineering from Cornell University.  He then went on to be a Post Doc at the University of Liverpool (UK) for two years.

Read More
585-475-7098

Currently Teaching

EGEN-231
1 Credits
The second course in a series of three courses for engineering honors students focused on how innovative products are developed, designed and manufactured to effectively meet the expanding needs of a global economy. This course highlights key issues that decision-makers in industry need to understand as they shape their companies to be more competitive in a global context. Specific topics in the course include an in-depth discussion of the manufacturing supply chain and how active management of the supply chain can enhance profitability and customer satisfaction. Additionally, the course addresses issues such as the the impact of government policies and monetary issues on globalization and outsourcing.
MECE-102
3 Credits
This course examines classical Newtonian mechanics from a calculus-based fundamental perspective with close coupling to integrated laboratory experiences. Topics include kinematics; Newton's laws of motion; work-energy theorem, and power; systems of particles and linear momentum; circular motion and rotation; mechanical waves, and oscillations and gravitation within the context of mechanical engineering, using mechanical engineering conventions and nomenclature. Each topic is reviewed in lecture, and then thoroughly studied in an accompanying laboratory session. Students conduct experiments using modern data acquisition technology; and analyze, interpret, and present the results using modern computer software.
MECE-104
3 Credits
This course combines the elements of Design process, Computer Aided Design (CAD), and Machine Shop Fabrication in the context of a design/build/test project. You will learn how to work in a team and use a formalized design process to justify and support design choices, how to use a CAD package to create three-dimensional models and assemblies, and how to safely fabricate metal parts using vertical mills and lathes.
MECE-305
3 Credits
This course provides the student with an overview of structure, properties, and processing of metals, polymers, and ceramics. Relevant basic manufacturing processes and materials selection is also discussed. There is a particular emphasis on steels, but significant attention is given to non-ferrous metals, ceramics, and polymers
MECE-550
3 Credits
The transportation sector represents nominally a third of the total energy consumption in the US, and presently, over 90% of this comes from petroleum sources. Transportation is responsible for about a quarter of greenhouse gas emissions and is a major source for several criteria pollutants. This course will introduce students to engineering practices used to evaluate transportation technologies from the standpoint of sustainability with an emphasis on light duty vehicles. Several emerging technologies including battery and hybrid electric vehicles, fuel cell vehicles, and bio-fuels will be considered. Particular attention will be devoted to the energy efficiency and emissions of the technology at the both vehicle and the fuel source levels. Additionally, the economic and social impacts will be examined. No text book will be assigned, and instead we will rely on open-access publications, journal articles, and electronic text available through the library. Approved as applied elective for the Energy & Environment Option and for the Automotive Option.
MECE-650
3 Credits
The transportation sector represents nominally a third of the total energy consumption in the US, and presently, over 90% of this comes from petroleum sources. Transportation is responsible for about a quarter of greenhouse gas emissions and is a major source for several criteria pollutants. This course will introduce students to engineering practices used to evaluate transportation technologies from the standpoint of sustainability with an emphasis on light duty vehicles. Several emerging technologies including battery and hybrid electric vehicles, fuel cell vehicles, and bio-fuels will be considered. Particular attention will be devoted to the energy efficiency and emissions of the technology at the both vehicle and the fuel source levels. Additionally, the economic and social impacts will be examined. No text book will be assigned, and instead we will rely on open-access publications, journal articles, and electronic text available through the library.