Parsian Katal Mohseni Headshot

Parsian Katal Mohseni

Associate Professor

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering
Program Faculty, School of Chemistry and Materials Science

585-475-7262
Office Location

Parsian Katal Mohseni

Associate Professor

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering
Program Faculty, School of Chemistry and Materials Science

Education

BS, Ph.D., McMaster University (Canada)

Bio

Dr. Parsian K. Mohseni holds B.Eng. and Ph.D. degrees in Engineering Physics from McMaster University, where he conducted graduate research as part of the Centre for Emerging Device Technologies and the Canadian Centre for Electron Microscopy. He carried out postdoctoral research at the Micro and Nanotechnology Laboratory and the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. In 2015, Dr. Mohseni joined the Microsystems Engineering Ph.D. Program at RIT as an Assistant Professor.

Read More
585-475-7262

Areas of Expertise

Select Scholarship

Journal Paper
Abrand, Alireza, et al. "Localized Self-Assembly of InAs Nanowire Arrays on Reusable Si Substrates for Substrate-Free Optoelectronics." ACS Applied Nano Materials 5. 1 (2022): 840-851. Web.
Choi, Wonsik, et al. "Selective Area Heteroepitaxy of p-i-n Junction GaP Nanopillar Arrays on Si (111) by MOCVD." IEEE Journal of Quantum Electronics. (2022): x-y. Web.
Song, Young Ho, et al. "Position Control of Self-Grown III–V Nanowire Arrays on Si Substrates via Micrometer-Size Patterns by Photolithography." Crystal Growth & Design. (2022): x-y. Web.
Show 17 More
Full Patent
Li, Xiuling, et al. "Metal assisted chemical etching to produce III-V semiconductor nanostructures." U.S. Patent USRE48407E1. 26 Jan. 2021.
Published Conference Proceedings
Fedorenko, Anastasiia, et al. "Multi-Terminal Dual-Junction GaAs0.73P0.27/In0.22Ga0.78As Nanowire Solar Cell: An Integrated Approach to Simulation." Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). Ed. N/A. Calgary, Canada: IEEE, 2021. Web.
D'Rozario, Julia R, et al. "Back Surface Reflectors for Thin III-V Multi-junction Space Photovoltaics." Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). Ed. N/A. Calgary, Canada: IEEE, 2020. Web.
Fedorenko, Anastasiia, et al. "Towards High-Efficiency Triple-Junction Bifacial III-V Nanowire-on-Silicon Solar Cells: Design Approaches Enabling the Concept." Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). Ed. N/A. Chicago, IL: IEEE, 2020. Web.
Show 5 More
Invited Keynote/Presentation
Mohseni, Parsian K. "Solar Cells and Light Emitting Diodes via Wafer-Scale Monolithic Integration of III-V Semiconductor Nanowire Arrays on Si and Graphene." 39th IEEE EDS Activities in Western New York Conference. IEEE. Rochester, NY. 6 Nov. 2015. Conference Presentation.

Currently Teaching

EGEN-289
1 - 4 Credits
Topics and subject areas that are not among the courses listed here are frequently offered under the special topics title. Under the same title also may be found experimental courses that may be offered for the first time. Such courses are offered in a formal format; that is, regularly scheduled class sessions with an instructor. The level of complexity is commensurate with an undergraduate engineering course at the 200 level.
MCEE-550
4 Credits
A laboratory course in which students manufacture and test CMOS integrated circuits. Topics include design of individual process operations and their integration into a complete manufacturing sequence. Students are introduced to work in process tracking, ion implantation, oxidation, diffusion, plasma etch, LPCVD, and photolithography. Student learn VLSI design fundamentals of circuit simulation and layout. Analog and Digital CMOS devices are made and tested. This course is organized around multidisciplinary teams that address the management, engineering and operation of the student run CMOS factory.
MCSE-795
1 Credits
In this seminar course students will present their latest research and learn about the research taking place in the program. All Microsystems Ph.D. students enrolled full time are required to attend each semester they are on campus.
MTSE-777
3 Credits
This course is a capstone project using research facilities available inside or outside of RIT.
MTSE-790
1 - 9 Credits
Dissertation research by the candidate for an appropriate topic as arranged between the candidate and the research advisor.
MTSE-793
0 Credits
Continuation of Thesis