Sustainability Ph.D. - Curriculum

Sustainability Ph.D.

Sustainability, Ph.D. degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
ISUS-702
Fundamentals of Sustainability Science
This course prepares students to understand grand challenges in sustainability, conduct original research related to sustainable production and consumption systems, and apply the scientific method in an integrative, team-based approach to graduate research. This course introduces fundamental concepts that are essential to understanding the interaction of economic, environmental, and social systems. Successful students will understand multiple perspectives on sustainability, the importance of sustainability as an ethical concept, behavioral impacts to sustainable solutions, and a life-cycle approach to organizing research related to sustainability. It is a core course within the Sustainability program. (This class is restricted to students in the SUSTSY-MS and SUST-PHD programs.) Lecture 3 (Fall).
3
ISUS-704
Industrial Ecology
Industrial ecology is the study of the interaction between industrial and ecological systems. Students in this course learn to assess the impact and interrelations of production systems on the natural environment by mastering fundamental concepts of ecology as a metaphor for industrial systems and the resultant tools from industrial ecology, including life cycle assessment, material flow analysis, and energy and greenhouse gas accounting. This is a core course within the Sustainability Ph.D. program. (This class is restricted to students in the SUSTSY-MS and SUST-PHD programs.) Lecture 3 (Fall).
3
ISUS-706
Economics of Sustainable Systems
The goal of this course is to introduce students to economic concepts and analysis pertaining to sustainable systems. This course offers a nontechnical but rigorous introduction to microeconomic theory, engineering economics, and benefit-cost analysis. A thorough treatment of models relevant to each topic is provided. The over-arching goal is for students to gain an understanding of the logic of economic reasoning and analysis as it pertains to the study of sustainable systems. (This class is restricted to students in the SUSTSY-MS and SUST-PHD programs.) Lecture 3 (Fall).
3
ISUS-806
Risk Analysis
The goal of this course is to introduce students to economic concepts and analysis pertaining to sustainable systems. This course offers a nontechnical but rigorous introduction to microeconomic theory, engineering economics, and benefit-cost analysis. A thorough treatment of models relevant to each topic is provided. The over-arching goal is for students to gain an understanding of the logic of economic reasoning and analysis as it pertains to the study of sustainable systems. (This class is restricted to students in the SUSTSY-MS and SUST-PHD programs.) Lecture 3 (Fall).
3
ISUS-808
Multicriteria Sustainable Systems
This class will explore how decisions are made when confronted with multiple, often conflicting, criteria or constraints. The focus will be on the following analytical methods: linear and stochastic programming, optimization, and Monte Carlo simulation. Case studies will focus on sustainability multi-criteria problems such as energy planning, sustainable development, resource management, and recycling. Students will apply methods learned to a project involving their graduate research. (This class is restricted to students in the SUSTSY-MS and SUST-PHD programs.) Lecture 3 (Spring).
3
 
Elective
3
Second Year
Complete8creditsfromthefollowing:
8
   ISUS-807
 Research
Research in fulfillment of Sustainability Ph.D. dissertation or M.S. capstone requirements. Thesis (Fall, Spring, Summer).
 
   ISUS-890
 Dissertation Research
Research fulfillment of Sustainability Ph.D. dissertation requirements. Thesis (Fall, Spring, Summer).
 
PUBL-810
Technology, Policy and Sustainability (or approved substitute)
This course introduces students to public policy and its role in building a sustainable society. The course places particular emphasis on the policy process; the relationship among technology, policy, and the environment; and policy mechanisms for addressing market and government failures that threaten sustainability. Lecture 3 (Fall, Spring).
3
 
Electives
9
Third Year
ISUS-890
Dissertation Research
Research fulfillment of Sustainability Ph.D. dissertation requirements. Thesis (Fall, Spring, Summer).
8
 
Electives
6
Fourth Year
ISUS-890
Dissertation Research
Research fulfillment of Sustainability Ph.D. dissertation requirements. Thesis (Fall, Spring, Summer).
8
Total Semester Credit Hours
60