Information Technology and Analytics MS - Curriculum

Information Technology and Analytics MS

Information Technology and Analytics (thesis and project options), MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
DSCI-633
Foundations of Data Science and Analytics
A foundations course in data science, emphasizing both concepts and techniques. The course provides an overview of data analysis tasks and the associated challenges, spanning data preprocessing, model building, model evaluation, and visualization. The major areas of machine learning, such as unsupervised, semi-supervised and supervised learning are covered by data analysis techniques including classification, clustering, association analysis, anomaly detection, and statistical testing. The course includes a series of assignments utilizing practical datasets from diverse application domains, which are designed to reinforce the concepts and techniques covered in lectures. A substantial project related to one or more data sets culminates the course. (This course is restricted to DATASCI-MS, INFOST-MS, SOFTENG-MS, COMPSCI-MS, or COMPIS-PHD Major students.) Lecture 3 (Fall, Spring).
3
STAT-614
Applied Statistics
Statistical tools for modern data analysis can be used across a range of industries to help you guide organizational, societal and scientific advances. This course is designed to provide an introduction to the tools and techniques to accomplish this. Topics covered will include continuous and discrete distributions, descriptive statistics, hypothesis testing, power, estimation, confidence intervals, regression, one-way ANOVA and Chi-square tests. (This class is restricted to degree-seeking graduate students or those with permission from instructor.) Lecture 3 (Fall).
3
ISTE-608
Database Design and Implementation
An introduction to the theory and practice of designing and implementing database systems. Current software environments are used to explore effective database design and implementation concepts and strategies. Topics include conceptual data modeling, methodologies, logical/physical database design, normalization, relational algebra, schema creation and data manipulation, and transaction design. Database design and implementation projects are required. Lec/Lab 4 (Fall, Spring).
3
ISTE-610
Non-Relational Data Management
This course provides students with exposure to foundational information sciences and technologies. Topics include an overview of data types, structuring and processing data and knowledge, data transformation, and data storage and warehousing. Students will work with non-traditional (noSQL) data stores to manage large datasets in the context of specific problem scenarios. (Prerequisites: ISTE-608 or DSCI-623 or CSCI-620 or equivalent course.) Lec/Lab 3 (Fall, Spring).
3
ISTE-612
Information Retrieval and Text Mining
This course provides students with exposure to foundational data analytics technologies, focusing on unstructured data. Topics include unstructured data modeling, indexing, retrieval, text classification, text clustering, and information visualization. (Prerequisites: ISTE-608 and (DECS-782 or STAT-145 or STAT-614) or equivalent courses.) Lec/Lab 3 (Fa/sp/su).
3
ISTE-782
Visual Analytics
This course introduces students to Visual Analytics, or the science of analytical reasoning facilitated by interactive visual interfaces. Course lectures, reading assignments, and practical lab experiences will cover a mix of theoretical and technical Visual Analytics topics. Topics include analytical reasoning, human cognition and perception of visual information, visual representation and interaction technologies, data representation and transformation, production, presentation, and dissemination of analytic process results, and Visual Analytic case studies and applications. Furthermore, students will learn relevant Visual Analytics research trends such as Space, Time, and Multivariate Analytics and Extreme Scale Visual Analytics. Lec/Lab 3 (Spring).
3
Second Year
Choose one of the following:
6
   ISTE-790
 Thesis in Information Sciences and Technologies
The thesis capstone experience for the Master of Science in Information Technology and Analytics program. Students must submit an approved capstone proposal in order to enroll. (Permission of capstone committee and graduate coordinator). (Enrollment in this course requires permission from the department offering the course.) Thesis (Fall, Spring, Summer).
6
 or
 
   ISTE-791
 Project In Information Sciences And Technologies
The project-based culminating experience for the Master of Science in Information Technology and Analytics program. A MS project will typically include a software system development component requiring a substantial and sustained level of effort. Students must submit an approved project proposal in order to enroll. (Permission of project committee and graduate program director). (Enrollment in this course requires permission from the department offering the course.) Project 3 (Fall, Spring, Summer).
3
 
 Elective
3
ISTE-605
Scholarship in Information Technology and Analytics
ITA graduate students are expected to make a scholarly contribution as a requirement for the MS degree. The Scholarship in Information Technology and Analytics course provides students with the fundamental skills needed to define and conduct a program of scholarly investigation in the form of a capstone or thesis project. The course focuses on skills such as academic writing, searching the literature, identifying and articulating interesting and important topics and problems, scholarship ethics, developing capstone proposals, critical thinking, and effective oral and written communication and presentation of scholarship. (This course is restricted to INFOST-MS, INFOTEC-MS and NETSYS-MS students.) Lecture 3 (Fall, Spring, Summer).
3
 
Elective
3
Total Semester Credit Hours
30

Electives List

Course
ISTE-721
Information Assurance Fundamentals
This course provides an introduction to the topic of information assurance as it pertains to an awareness of the risks inherent in protecting digital content in today’s networked computing environments. Topics in secure data and information access will be explored from the perspectives of software development, software implementation, data storage, and system administration and network communications. The application of computing technologies, procedures and policies and the activities necessary to detect, document, and counter unauthorized data and system access will be explored. Effective implementation will be discussed and include topics from other fields such as management science, security engineering and criminology. A broad understanding of this subject is important for computing students who are involved in the architecting and creation of information and will include current software exploitation issues and techniques for information assurance. Lec/Lab 3 (Spring).
ISTE-724
Data Warehousing
This course covers the purpose, scope, capabilities, and processes used in data warehousing technologies for the management and analysis of data. Students will be introduced to the theory of data warehousing, dimensional data modeling, the extract/transform/load process, warehouse implementation, dimensional data analysis, and summary data management. The basics of data mining and importance of data security will also be discussed. Hands-on exercises include implementing a data warehouse. (Prerequisites: ISTE-608 or equivalent course.) Lec/Lab 3 (Fall, Spring).
ISTE-730
Foundations of IOT
Internet of Things (IoT) refers to physical and virtual objects that are connected to the Internet to provide intelligent services for energy management, logistics, retail, agriculture and many other domains. IoT leverages sensors, wireless communication, mobile devices, networking and cloud technologies to create many smart applications. In this course, the students learn about IoT design and development methodologies that enable the development of IoT applications. The students have hands-on opportunities to program and build IoT prototypes through lab assignments and a course project. The students should have some programming knowledge and required to purchase a IoT kit. (This course is restricted to students in INFOST-MS.) Lecture 3 (Spring).
ISTE-732
IOT Analytics
IoT is simply interconnected devices that generate and exchange data from observations, facts, and other data, making it available to anyone. This includes devices that generate data from sensors, smart phones, appliances, and home network devices. IoT solutions are designed to make our knowledge of the world around us more aware and relevant, making it possible to get data about anything from anywhere at any time. This course teaches how IoT data could help and execute data driven operational and business decisions. The students learn how IoT analytics can create adaptive business and operational decisions in intelligent, effective and efficient ways. First, this course provides students with an understanding of different types of IoT data and the knowledge of how to handle the data relate to IoT. Then, the students learn how to create and setup a cloud analytic environment, exploring IoT data. The course also teaches how to apply analytics and statistics to extract value from the data. Lastly, the course explores different use-cases for IoT data. Purchasing a IoT kit is required. (This course is restricted to INFOST-MS or HUMCOMP-MS or DATASCI-MS students.) Lec/Lab 3 (Fall).
ISTE-764
Project Management
Information technology projects require the application of sound project management principles in order to be developed on time, on budget, and on specification. This course takes students through the nine knowledge areas of modern project management and the utilization of project management principles in both traditional and agile environments. Lecture 3 (Fall).
ISTE-780
Data Driven Knowledge Discovery
Rapidly expanding collections of data from all areas of society are becoming available in digital form. Computer-based methods are available to facilitate discovering new information and knowledge that is embedded in these collections of data. This course provides students with an introduction to the use of these data analytic methods, with a focus on statistical learning models, within the context of the data-driven knowledge discovery process. Topics include motivations for data-driven discovery, sources of discoverable knowledge (e.g., data, text, the web, maps), data selection and retrieval, data transformation, computer-based methods for data-driven discovery, and interpretation of results. Emphasis is placed on the application of knowledge discovery methods to specific domains. (Prerequisite: DSCI-633 or equivalent course.) Lec/Lab 3 (Fall, Summer).

Note for online students

The frequency of required and elective course offerings in the online program will vary, semester by semester, and will not always match the information presented here. Online students are advised to seek guidance from the listed program contact when developing their individual program course schedule.