Education

The Center for Geographic Information Science & Technology facilitates a variety of undergraduate and graduate educational offerings at the Rochester Institute of Technology (RIT) through the School of Interactive Games and Media. See the following program descriptions for more details and contact Dr. Brian Tomaszewski for more information on these programs.

Geographic Information Systems Minor

The geographic information systems (GIS) minor provides students with experience in the concepts, technology, and applications related to computer-based mapping, spatial databases, and geographic analysis and problem solving. Required courses provide core GIS foundations applicable to a variety of multidisciplinary elective courses students can choose from to match their research, post-graduate, or career interests.

Notes about this minor:

  • Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
  • The plan code for Geographic Information Systems Minor is GIS-MN.
  • For more information, visit the GIS Minor Webpage

Required Courses

IGME-382
Credits 3
This course provides a survey of underlying concepts and technologies used to represent and understand the earth, a form of new media collectively referred to as Geospatial Technologies (GTs). Students will gain hands-on experience with GTs, including Global Positioning Systems (GPSs), Geographic Information Systems (GISs), remote sensing, Virtual Globes, and geographically-oriented new media such as mapping mashups. Students also will develop basic spatial thinking, reasoning, problem solving, and literacy skills.
IGME-384
Credits 3
This course introduces students to Geographic Information Systems (GIS) for understanding and representing people, places and culture through new media. Through applied research projects, students will learn how GIS is a support mechanism for spatially-oriented thinking, reasoning, literacy, and problem-solving at the global scale. Such global problems include international disaster management, digital humanities, climate change, and sustainable development. Course lectures, writing and reading assignments, and in-class activities cover a mix of conceptual, practical and technical GIS topics. Topics include interactions among people, places and cultures around the world, GIS data models, basic cartography, geodatabases, spatial data acquisition and creation, and spatial analysis. This general education course also examines GIS ethical issues such as privacy, information ownership, accuracy, and mapping and social power.

Electives - Choose three of the following:

CVET-160
Credits 3
Introduction to fundamentals of surveying. Topics include note taking; differential leveling; vertical and horizontal measurement; traversing; topographic mapping; horizontal, vertical, compound and reverse curves; and earthwork.
CVET-161
Credits 1
Students apply the fundamentals of surveying to field exercises using modern surveying equipment. Field exercises include differential leveling, cross sections, traversing, topographic mapping, horizontal curve layout, vertical curve design, and earthwork estimation.
IMGS-431
Credits 3
This course offers an introduction to remote sensing systems and a selection of environmental applications of remote sensing. The basic properties of electromagnetic radiation, its interaction with the atmosphere and earth surfaces (e.g., vegetation, minerals, water, etc.), and the interpretation of these interactions are dealt with in the first half of the course. This is followed by a description of airborne and spaceborne, active and passive sensors that operate throughout the electromagnetic spectrum for detecting physical phenomena. Finally, an introduction is provided to pre-processing and analysis techniques that are useful for extracting information from such sensors. The Earth's atmospheric, hydrospheric, and terrestrial processes are considered at local to regional scales. Application areas include monitoring vegetation health, measuring biomass (carbon sequestration), identifying cultural features, assessing water resources, and detecting pollution and natural hazards.
IGME-386
Credits 3
This course is targeted to students with a serious interest in geographical problem solving via underlying spatial algorithms. Students will learn how to compare and contrast different specific spatial algorithms for solving specific geographic problems and develop proficiency with encoding and implementing spatial algorithms in computer programs. Students taking this course will gain a broad interdisciplinary skill set in how to think spatially and computationally through critical engagement of geographical problem solving.
IGME-484
Credits 3
This course examines the use of maps for geographic problem solving and scientific inquiry. Students will learn theory, concepts and techniques associated with maps and new media such as geographic problem solving and scientific inquiry devices such as map comprehension, evaluation, construction, usage, and assessment. Students will also learn how to compare, contrast, and implement map-based geographic problem solving and scientific inquiry techniques with geographically-oriented new media such as thematic cartography, geographic information visualization, three dimensional modeling and animated and interactive maps. A geographic problem solving research project that incorporates thematic cartography and geographic visualization solutions is required.
ISTE-230
Credits 3
A presentation of the fundamental concepts and theories used in organizing and structuring data. Coverage includes the data modeling process, basic relational model, normalization theory, relational algebra, and mapping a data model into a database schema. Structured Query Language is used to illustrate the translation of a data model to physical data organization. Modeling and programming assignments will be required. Note: students should have one course in object-oriented programming.
ENGL-422
Credits 3
This course takes as its premise that spatial thinking is critically important. Spatial thinking informs our ability to understand many areas of 21st century culture, as mobile interfaces and geospatial technologies enable us to engage with our surroundings in new ways. The study begins with the history maps and mapmaking, and explores how maps work. As students create representational, iconographic, satirical, image-based, informational, and other map forms, the course emphasizes the map as narrative. The course develops into an exploration of the ways, particularly in texts, that mapmaking creates cultural routes, mobile forms of ethnography, and ways of imagining travel and tourism in the era of globalization. The diverse writers represented in this course are rethinking space as a dynamic context for the making of history and for different organizations of social and communal life.

Geographic Information Systems Immersion

As the world grows in complexity and interconnectedness, new challenges arise in visually representing, reasoning, and making sense of spatially-oriented problems and data. The geographic information systems immersion allows students to study geographic problem solving and scientific inquiry from an interdisciplinary perspective of interactive, digital mapping tools and related digital data problem solving technologies. Students are introduced to geographic mapping concepts and theory, digital cartography, geographic problem solving with geospatial and related computer tools, geospatial technology ethics and application of GIS to global problems such as natural disasters. This immersion is closed to students majoring in game design and development and new media interactive development.

The plan code for Geographic Information Systems Immersion is GIS-IM.

For more information, visit the Geographic Information Systems Immersion webpage.

Required Courses

IGME-382
Credits 3
This course provides a survey of underlying concepts and technologies used to represent and understand the earth, a form of new media collectively referred to as Geospatial Technologies (GTs). Students will gain hands-on experience with GTs, including Global Positioning Systems (GPSs), Geographic Information Systems (GISs), remote sensing, Virtual Globes, and geographically-oriented new media such as mapping mashups. Students also will develop basic spatial thinking, reasoning, problem solving, and literacy skills.
IGME-384
Credits 3
This course introduces students to Geographic Information Systems (GIS) for understanding and representing people, places and culture through new media. Through applied research projects, students will learn how GIS is a support mechanism for spatially-oriented thinking, reasoning, literacy, and problem-solving at the global scale. Such global problems include international disaster management, digital humanities, climate change, and sustainable development. Course lectures, writing and reading assignments, and in-class activities cover a mix of conceptual, practical and technical GIS topics. Topics include interactions among people, places and cultures around the world, GIS data models, basic cartography, geodatabases, spatial data acquisition and creation, and spatial analysis. This general education course also examines GIS ethical issues such as privacy, information ownership, accuracy, and mapping and social power.

Electives - Choose one of the following:

ENGL-422
Credits 3
This course takes as its premise that spatial thinking is critically important. Spatial thinking informs our ability to understand many areas of 21st century culture, as mobile interfaces and geospatial technologies enable us to engage with our surroundings in new ways. The study begins with the history maps and mapmaking, and explores how maps work. As students create representational, iconographic, satirical, image-based, informational, and other map forms, the course emphasizes the map as narrative. The course develops into an exploration of the ways, particularly in texts, that mapmaking creates cultural routes, mobile forms of ethnography, and ways of imagining travel and tourism in the era of globalization. The diverse writers represented in this course are rethinking space as a dynamic context for the making of history and for different organizations of social and communal life.
GCIS-123
Credits 4
A first course introducing students to the fundamentals of computational problem solving. Students will learn a systematic approach to problem solving, including how to frame a problem in computational terms, how to decompose larger problems into smaller components, how to implement innovative software solutions using a contemporary programming language, how to critically debug their solutions, and how to assess the adequacy of the software solution. Additional topics include an introduction to object-oriented programming and data structures such as arrays and stacks. Students will complete both in-class and out-of-class assignments.
ISTE-230
Credits 3
A presentation of the fundamental concepts and theories used in organizing and structuring data. Coverage includes the data modeling process, basic relational model, normalization theory, relational algebra, and mapping a data model into a database schema. Structured Query Language is used to illustrate the translation of a data model to physical data organization. Modeling and programming assignments will be required. Note: students should have one course in object-oriented programming.
IGME-386
Credits 3
This course is targeted to students with a serious interest in geographical problem solving via underlying spatial algorithms. Students will learn how to compare and contrast different specific spatial algorithms for solving specific geographic problems and develop proficiency with encoding and implementing spatial algorithms in computer programs. Students taking this course will gain a broad interdisciplinary skill set in how to think spatially and computationally through critical engagement of geographical problem solving.
STSO-550
Credits 3
The concept of sustainability has driven many national and international policies. More recently, we have become aware that unless we physical build and rebuild our communities in ways that contribute to sustainability, making progress toward that goal is unlikely. It is equally important to recognize the social aspects of sustainability. In addition, it is at the local level that the goals of equity (a key consideration in community sustainability), most often achieved through citizen participation and collaborative processes are most easily realized. This course will broaden students understanding of the concept of sustainability, particularly the concept of social sustainability. This course focuses on sustainability as a way to bring light to the connections between natural and human communities, between nature and culture, and among environmental, economic, and social systems. Working closely with local organizations, students will explore the applicability of theoretical concepts.

Geographic Information Systems Graduate Classes

All GIS graduate courses are offered online.

IGME-770
Credits 3
This course will introduce students to the spatial data science life cycle, which provides location- specific algorithms and analytical methods to solve big spatial data problems. This course Students are provided with s a hands-on experience in capturing, engineering, visualizing, analyzing, and sharing results of spatial data science workflows. Lastly, the course will provide students with a background in core spatial data science methods and theories, including Geographic Information Systems (GIS), spatial analysis, geographic visualization cartography, and web mapping.
IGME-771
Credits 3
This online course introduces students to the world of Geographic Information Systems (GIS). Course lectures, reading assignments, and practical lab experiences will cover a mix of conceptual, practical and technical GIS topics. Topics include GIS data models, basic cartography, geodatabases, spatial analysis, GIS software, and theory and concepts from the Geographic Information Science and Technology domain.
IGME-772
Credits 3
This course examines concepts and techniques associated with dynamic map construction, usage, and assessment. Specific topics include thematic cartography, geographic information visualization, sources of dynamic geographic information, developing animated and interactive maps, mapping mashup development, using maps as a means to support group work, usability of dynamic maps, and current geovisualization research areas. Development of a visualization prototype and an associated scholarly paper in an area related to thematic cartography and geographic visualization are required.

Educational Videos

Basic Spatial Analysis Geographic Information Systems (GIS): A Technical Video Lecture

Subscribe to our YouTube channel for more videos or see a complete list of our educational videos.

Esri Development Center

ESRI Development Center logo.

RIT is an Esri Development Center

If you are interested in GIS application and software development, please contact us for more information on how you can take advantage of resources available via our designation as an Esri Development Center.