Eric Ottman
Lecturer
School of Mathematics and Statistics
College of Science
585-475-5463
Office Hours
Mon 9:00-10:00, Wed 2:00-3:00, Fri 1:00-3:00 or by appointment
Office Location
Eric Ottman
Lecturer
School of Mathematics and Statistics
College of Science
585-475-5463
Areas of Expertise
commutative algebra
homological algebra
algebraic geometry
Currently Teaching
MATH-171
Calculus A
3 Credits
This is the first course in a three-course sequence (COS-MATH-171, -172, -173). This course includes a study of precalculus, polynomial, rational, exponential, logarithmic and trigonometric functions, continuity, and differentiability. Limits of functions are used to study continuity and differentiability. The study of the derivative includes the definition, basic rules, and implicit differentiation. Applications of the derivative include optimization and related-rates problems.
MATH-172
Calculus B
3 Credits
This is the second course in three-course sequence (COS-MATH-171, -172, -173). The course includes Riemann sums, the Fundamental Theorem of Calculus, techniques of integration, and applications of the definite integral. The techniques of integration include substitution and integration by parts. The applications of the definite integral include areas between curves, and the calculation of volume.
MATH-182
Calculus II
4 Credits
This is the second in a two-course sequence. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates.
MATH-241
Linear Algebra
3 Credits
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course.