Santosh Kurinec Headshot

Santosh Kurinec

Professor

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering
Extended Faculty
Golisano Institute for Sustainability

585-475-2927
Office Location

Santosh Kurinec

Professor

Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering
Extended Faculty
Golisano Institute for Sustainability

Education

BS, MS, Ph.D., University of Delhi (India)

Bio

Santosh K. Kurinec is a Fellow of IEEE and Professor of Electrical & Microelectronic Engineering at Rochester Institute of Technology (RIT). She served as the Department Head of Microelectronic Engineering from 2001-2009 after which she took an academic year sabbatical at IBM T.J. Watson Research Center, Yorktown Heights, NY as a visiting scholar.

Read More
585-475-2927

Areas of Expertise

Select Scholarship

Journal Paper
Jacob, Paul, et al. "A Comparative Study of n- and p-Channel FeFETs with Ferroelectric HZO Gate Dielectric." Solids 4. 4 (2023): 356-367. Print.
Spaulding, C., et al. "Introducing gallium in silicon and thin film polysilicon using self assembled monolayer doping." Materials Letters 325. 132838 (2022): 1-4. Print.
Kurinec, Santosh K., et al. "Degradation Analysis of an Operating PV Module on a Farm Sanctuary." Journal of Renewable and Sustainable Energy 10. 1 (2018): 013505-013513. Print.
Show 9 More
Book Chapter
Kurinec, S., N. Loubet, and D. Sadana. "A road to CMOS node beyond 2nm." Ion Implantation - Science and Technology. Cox Neck Road, Maryland: Ion Implantation Technology Co., 2022. 15-1 - 15-19. Print.
Kurinec, Santosh. "Silicon Solar Photovoltaics: Slow Ascent to Exponential Growth." Women in Mechanical Engineering – Energy and the Environment. Ed. M. Bailey and L. Shackleford. Switzerland, Switzerland: Springer Cham, 2022. 221-243. Print.
Kurinec, Santosh K. "Nanoscale Materials Engineering for Microelectronics." Women in Microelectronics. Ed. Alice Cline Parker and Leda Lunardi. Switzerland, Switzerland: Springer Nature Switzerland AG 2020, 2020. 49-64. Print.
Show 2 More
Full Length Book
Kurinec, Santosh K. Sumeet Walia. Boca Raton, Florida, FL: CRC Press; Taylor and Francis, 2019. Print.
Kurinec, Santosh K. Emerging Photovoltaic Materials:Silicon & Beyond. Hoboken, NJ: Scrivener Publishing WILEY, 2018. Print.
Kurinec, Santosh K and Krzysztof Iniewski. Nanoscale Semiconductor Memories: Technology and Applications. 1 ed. New York City, NY: CRC Press, 2013. Print.
Published Conference Proceedings
Kurinec, Santosh K., et al. "Performance analysis of a “Green” building photovoltaic system." Proceedings of the : Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. Ed. IEEE. Portland, Oregon: IEEE, 2016. Print.
Kurinec, Santosh K., et al. "Nickel silicide metallization for passivated tunneling contacts for silicon solar cells." Proceedings of the Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. Ed. IEEE. Portland, Oregon: IEEE, 2016. Print.
Richer, Santosh Kurinec, Chih Yu Jen, Gaurav Tulsyan, Christiaan. "Terahertz Time-domain Spectroscopy for Characterization of Doping Profiles in Semiconductors." Proceedings of the , Frontiers of Characterization & Metrology for Nanoelectronics. Ed. NIST. Dresden, Germany: NIST, 2015. Web.
Show 2 More
Invited Keynote/Presentation
Kurinec, Santosh K. "Advances in Nonvolatile Memory Technologies." IEEE Oregon CPMT/CAS & MTT/ED Chapter Seminar. IEEE Oregon Chapter. Beaverton, OR. 5 Feb. 2015. Keynote Speech.
Kurinec, Santosh K. "Emerging Nonvolatile Memory Technologies & Applications." Portland State University Seminar. Portland State University. Portland, OR. 6 Feb. 2015. Guest Lecture.
Kurinec, Santosh K. "XRD/TEM/EELS Studies on Memory Device Structures." Frontiers of Characterization & Metrology for Nanoelectronics. The National Institute of Standards and Technology (NIST). Dresden, Germany. 15 Apr. 2015. Conference Presentation.
Show 14 More
Editor (book or journal)
Kurinec,Santosh. Microelectronics and Electronics, IEEE Transactions on Education.Piscataway, NJ: IEEE Education Society, 2010. Print.
Published Article
Devasia Archana, Santosh Kurinec, Kristy Campbell, Simone Raoux. “Influence of Sn Migration on PhaseTransition in GeTe and Ge2Se3 Thin Films.”Applied Physics Letters, 96.14 (2010):141908-1-3. Print. "  É  *
Kurinec, Santosh,Michael Jackson, Davide Marriotti, Surendra Gupta, Sean Rommel, Dale Ewbank, Karl Hirschman, Robert Pearsonand Lynn Fuller. “Microelectronic EngineeringEducation for Emerging Technologies.” IEEE Frontiers in Education (FIE) Conference,(27-30 October 2010). T3J-1-6. Web. É  *
Kurinec, Santosh, Sean Rommel, Dale Ewbank, and Karl Hirschman.“Summer Innovation Experience for Undergraduates in Semiconductor Technology.” Frontiers in Education, (October 2010): T1J-1-2. Web. *
Show 2 More
Formal Presentation
Kurinec, Santosh. “Nanoscale Materials Engineering for PhaseChange and Magnetoresistive Nonvolatile Memory.” IEEE Electron Device Society Central Texas Chapter. Austin, TX. 17September 2010. Presentation.
Fellowship
IEEE Fellow

Currently Teaching

EEEE-711
3 Credits
A graduate course in the fundamental principles and operating characteristics of carrier-injection-based semiconductor devices. Advanced treatments of pn junction diodes, metal-semiconductor contacts, and bipolar junction transistors form the basis for subsequent examination of more complex carrier-injection devices, including tunnel devices, transferred-electron devices, thyristors and power devices, light-emitting diodes (LEDs), and photodetectors. Topics include heterojunction physics and heterojunction bipolar transistors (HBT).
EEEE-712
3 Credits
An advanced-level course on MOSFETs and submicron MOS devices. Topics include MOS capacitors, gated diodes, long-channel MOSFETs, subthreshold conduction and off-state leakage, short-channel effects, hot-carrier effects, MOS scaling and advanced MOS technologies.
EEEE-713
3 Credits
An advanced-level course on solid-state physics, with particular emphasis on the electronic properties of semiconductor materials. Topics include crystal structure, wave propagation in crystalline solids, lattice vibrations, elements of quantum mechanics, elements of statistical mechanics, free-electron theory of metals, Boltzmann transport equation, quantum-mechanical theory of carriers in crystals, energy band theory, equilibrium carrier statistics, excess carriers in semiconductors, carrier transport.
MCEE-520
3 Credits
This course focuses on the principle and engineering fundamentals of photovoltaic (PV) energy conversion. The course covers modern silicon PV devices, including the basic physics, ideal and non-ideal models, device parameters and design, and device fabrication. The course discusses crystalline, multi-crystalline, amorphous thin films solar cells and their manufacturing. Students will become familiar with basic semiconductor processes and how they are employed in solar cells manufacturing. The course further introduces third generation advanced photovoltaic concepts including compound semiconductors, spectral conversion, and organic and polymeric devices. PV applications, environmental, sustainability and economic issues will also be discussed. Evaluations include assignments and exams, a research/term paper on a current PV topic.
MCEE-601
3 Credits
This course introduces the beginning graduate student to the fabrication of solid-state devices and integrated circuits. The course presents an introduction to basic electronic components and devices, lay outs, unit processes common to all IC technologies such as substrate preparation, oxidation, diffusion and ion implantation. The course will focus on basic silicon processing. The students will be introduced to process modeling using a simulation tool such as SUPREM. The lab consists of conducting a basic metal gate PMOS process in the RIT clean room facility to fabricate and test a PMOS integrated circuit test ship. Laboratory work also provides an introduction to basic IC fabrication processes and safety.
MCEE-620
3 Credits
This course focuses on the principle and engineering fundamentals of photovoltaic (PV) energy conversion. The course covers modern silicon PV devices, including the basic physics, ideal and non-ideal models, device parameters and design, and device fabrication. The course discusses crystalline, multi-crystalline, amorphous thin films solar cells and their manufacturing. Students will become familiar with basic semiconductor processes and how they are employed in solar cells manufacturing. The course further introduces third generation advanced photovoltaic concepts including compound semiconductors, spectral conversion, and organic and polymeric devices. PV applications, environmental, sustainability and economic issues will also be discussed. Evaluations include assignments and exams, a research/term paper on a current PV topic.
MCEE-713
3 Credits
This course describes the key elements of quantum mechanics and solid state physics that are necessary in understanding the modern semiconductor devices. Quantum mechanical topics include solution of Schrodinger equation solution for potential wells and barriers, subsequently applied to tunneling and carrier confinement. Solid state topics include electronic structure of atoms, crystal structures, direct and reciprocal lattices. Detailed discussion is devoted to energy band theory, effective mass theory, energy-momentum relations in direct and indirect band gap semiconductors, intrinsic and extrinsic semiconductors, statistical physics applied to carriers in semiconductors, scattering and generation and recombination processes.
MTSE-777
3 Credits
This course is a capstone project using research facilities available inside or outside of RIT.
MTSE-790
1 - 9 Credits
Dissertation research by the candidate for an appropriate topic as arranged between the candidate and the research advisor.

In the News