Math Modeling Seminar: Dynamic Wetting Failure and Air Entrainment in Coating Flows

Event Image
math modeling seminar

Math Modeling Seminar
Dynamic Wetting Failure and Air Entrainment in Coating Flows

Dr. Satish Kumar
Distinguished McKnight University Professor
Faculty Director, Industrial Partnership for Research in
Interfacial and Materials Engineering (IPRIME)
Department of Chemical Engineering and Materials Science
University of Minnesota

You may attend this lecture in person at 2305 Gosnell Hall or virtually via Zoom.
If you’d like to attend virtually, you may register here for Zoom link.

Abstract
:

Dynamic wetting is crucial to processes where liquid displaces another fluid (such as air) along a solid surface, an important example being the deposition of a coating liquid onto a moving substrate. Dynamic wetting failure occurs when the displacement happens too quickly, and this leads to entrainment of the receding fluid into the advancing liquid. In coating processes this entrainment compromises the quality of the final product, so it is desirable to develop a fundamental understanding of the factors that control the onset of dynamic wetting failure. In this talk, I will discuss how the interplay between experiments and modeling has enabled progress in this area. The experiments involve measurements of the critical speed at which wetting failure occurs and flow visualizations of air entrainment. The modeling involves a combination of asymptotic analysis and two-dimensional finite element calculations that link the onset of wetting failure to limit points in families of steady-state solutions. The results reveal the mechanisms responsible for wetting failure and suggest strategies for delaying the onset of air entrainment in coating flows.

Speaker Bio:
Dr. Satish Kumar is a Distinguished McKnight University Professor at the University of Minnesota where he is on the faculty of the Department of Chemical Engineering and Materials Science. Prof. Kumar received his undergraduate degree from Minnesota (1993), and his master's (1994) and doctoral degrees (1998) from Stanford University, all in chemical engineering. Following postdoctoral work at École Normale Supérieure (Paris) and the University of Michigan, he joined the faculty at Minnesota in 2001. Prof. Kumar currently serves as Faculty Director of the Industrial Partnership for Research in Interfacial and Materials Engineering (IPRIME), a university-industry consortium that has approximately 15 member companies. He is both a Fellow and an Outstanding Referee of the American Physical Society, is Co-Editor-in-Chief of the Journal of Engineering Mathematics, serves on the editorial board of the Journal of Non-Newtonian Fluid Mechanics, is a member of the Executive Committee of the American Physical Society Division of Fluid Dynamics, and is a former president of the International Society of Coating Science and Technology.  Prof. Kumar's research involves integration of transport phenomena, colloid and interface science, rheology, applied and computational mathematics, and experiments to address fundamental issues motivated by problems in materials processing. These fundamental investigations, which are described in over 145 journal articles and 24 PhD theses, are frequently inspired by industrial applications such as coating and printing processes, polymer processing, nanofluidics/microfluidics, and energy. Read more here.

Intended Audience:
Undergraduates, graduates, and experts. Those with interest in the topic.

The Math Modeling Seminar will recur each week throughout the semester on the same day and time. Find out more about upcoming speakers on the Mathematical Modeling Seminar Series webpage.
To request an interpreter, please visit myaccess.rit.edu

*Thanks to support from RIT's Department of Chemical Engineering, Dr. Kumar will be delivering his talk in person!


Contact
Nathan Cahill
Event Snapshot
When and Where
April 05, 2022
2:00 pm - 2:50 pm
Room/Location: 2305
Who

Open to the Public

Interpreter Requested?

No

Topics
research