Big Data Analytics Advanced Certificate

A big data certificate that will develop your expertise in managing, analyzing big data.


Overview for Big Data Analytics Adv. Cert.

The mass amount of data collected by industries, retailers, and organizations requires knowledgeable professionals who can collect, mine, and analyze as well as store, retrieve, and manage data. These professionals also guide the analysis, preparation, and visualization of data to aid in understanding trends, patterns, and behaviors, all of which help impact business decisions.

Read More
Loading...

Curriculum for 2024-2025 for Big Data Analytics Adv. Cert.

Current Students: See Curriculum Requirements

Big Data Analytics, advanced certificate, typical course sequence

Course Cr. Hrs.
First Year
CSCI-620 3
This course provides a broad introduction to the exploration and management of large datasets being generated and used in the modern world. First, practical techniques used in exploratory data analysis and mining are introduced; topics include data preparation, visualization, statistics for understanding data, and grouping and prediction techniques. Second, approaches used to store, retrieve, and manage data in the real world are presented; topics include traditional database systems, query languages, and data integrity and quality. Case studies will examine issues in data capture, organization, storage, retrieval, visualization, and analysis in diverse settings such as urban crime, drug research, census data, social networking, and space exploration. Big data exploration and management projects, a term paper and a presentation are required. Sufficient background in database systems and statistics is recommended. (Prerequisite: CSCI-603 or CSCI-605 with a grade of B or better or (CSCI-320 or SWEN-344). May not take and receive credit for CSCI-620 and CSCI-420. If earned credit for/or currently enrolled in CSCI-420 you will not be permitted to enroll in CSCI-620.) Lecture 3 (Fall, Spring, Summer).
CSCI-720 3
This course provides a graduate-level introduction to the concepts and techniques used in data mining. Topics include the knowledge discovery process; prototype development and building data mining models; current issues and application domains for data mining; and legal and ethical issues involved in collecting and mining data. Both algorithmic and application issues are emphasized to permit students to gain the knowledge needed to conduct research in data mining and apply data mining techniques in practical applications. Data mining projects, a term paper, and presentations are required. (Prerequisites: CSCI-620 or (CSCI-420 and CSCI-320) or (4003-485 and 4003-487) or equivalent course.) Lecture 3 (Fall, Spring).
 
Elective
3
Second Year
 
Elective
3
Total Credit Hours
12

Admissions and Financial Aid

This program is available on-campus only.

Offered Admit Term(s) Application Deadline STEM Designated
Part‑time Fall or Spring Rolling No

Part-time study is 1‑8 semester credit hours. RIT will not issue a student visa for advanced certificates.

Application Details

To be considered for admission to the Big Data Analytics Adv. Cert. program, candidates must fulfill the following requirements:

English Language Test Scores

International applicants whose native language is not English must submit one of the following official English language test scores. Some international applicants may be considered for an English test requirement waiver.

TOEFL IELTS PTE Academic
88 6.5 60

International students below the minimum requirement may be considered for conditional admission. Each program requires balanced sub-scores when determining an applicant’s need for additional English language courses.

How to Apply Start or Manage Your Application

Cost and Financial Aid

An RIT graduate degree is an investment with lifelong returns. Graduate tuition varies by degree, the number of credits taken per semester, and delivery method. View the general cost of attendance or estimate the cost of your graduate degree.

A combination of sources can help fund your graduate degree. Learn how to fund your degree

Additional Information

Prerequisites

Have college-level credit or practical experience in probability and statistics, computer programming in a high-level language, and database systems.

Contact

Admissions Contact
Program Contact
  • Hans-Peter Bischof
  • Graduate Program Coordinator
  • Department of Computer Science
  • Golisano College of Computing and Information Sciences
  • 585‑475‑5568
  • hxbics@rit.edu
Offered within the
Department of Computer Science