Mathematical Modeling Doctor of Philosophy (Ph.D.) Degree

The mathematical modeling Ph.D. enables you to develop mathematical models to investigate, analyze, predict, and solve the behaviors of a range of fields from medicine, engineering, and business to physics and science.


Overview for Mathematical Modeling Ph.D.

Mathematical modeling is the process of developing mathematical descriptions, or models, of real-world systems. These models can be linear or nonlinear, discrete or continuous, deterministic or stochastic, and static or dynamic, and they enable investigating, analyzing, and predicting the behavior of systems in a wide variety of fields. Through extensive study and research, graduates of the mathematical modeling Ph.D. will have the expertise not only to use the tools of mathematical modeling in various application settings, but also to contribute in creative and innovative ways to the solution of complex interdisciplinary problems and to communicate effectively with domain experts in various fields.

Plan of Study

Read More
Loading...

Research

The College of Science consistently receives research grant awards from organizations that include the National Science Foundation, National Institutes of Health, and NASA, which provide you with unique opportunities to conduct cutting-edge research with our faculty members.

Faculty in the School of Mathematics and Statistics conducts research on a broad variety of topics including:

  • applied inverse problems and optimization
  • applied statistics and data analytics
  • biomedical mathematics
  • discrete mathematics
  • dynamical systems and fluid dynamics
  • geometry, relativity, and gravitation
  • mathematics of earth and environment systems
  • multi-messenger and multi-wavelength astrophysics

Learn more by exploring the school’s mathematics research areas.

Featured Work and Profiles

Related News

  • May 6, 2024

    Nastaran Nagshineh is shown with other faculty in a small room where she defended her thesis.

    RIT graduate pursues Ph.D. across time zones

    Nastaran Nagshineh, a Ph.D. candidate at RIT, successfully bridged the Rochester and Dubai campuses, paving the way for future international students. Nagshineh is one of 67 Ph.D. students who defended their thesis this academic year and who will earn their doctorate.

  • May 8, 2023

    close up of shampoo, showing large and small purple, yellow and orange bubbles.

    Squishing the barriers of physics

    Four RIT faculty members are opening up soft matter physics, sometimes known as “squishy physics,” to a new generation of diverse scholars. Moumita Das, Poornima Padmanabhan, Shima Parsa, and Lishibanya Mohapatra are helping RIT make its mark in the field.

Curriculum for 2024-2025 for Mathematical Modeling Ph.D.

Current Students: See Curriculum Requirements

Mathematical Modeling, Ph.D. degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
MATH-602 3
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and matrix algebra. (Prerequisites: MATH-411 or equivalent course and graduate standing.) Lecture 3 (Fall).
MATH-606 1
The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Fall).
MATH-607 1
This course is a continuation of Graduate Seminar I. It prepares students to engage in activities necessary for independent mathematical research and introduces them to a broad range of active interdisciplinary programs related to applied mathematics. (Prerequisite: MATH-606 or equivalent course or students in the ACMTH-MS or MATHML-PHD programs.) Lecture 2 (Spring).
MATH-622 3
This course will introduce graduate students to the logical methodology of mathematical modeling. They will learn how to use an application field problem as a standard for defining equations that can be used to solve that problem, how to establish a nested hierarchy of models for an application field problem in order to clarify the problem’s context and facilitate its solution. Students will also learn how mathematical theory, closed-form solutions for special cases, and computational methods should be integrated into the modeling process in order to provide insight into application fields and solutions to particular problems. Students will study principles of model verification and validation, parameter identification and parameter sensitivity and their roles in mathematical modeling. In addition, students will be introduced to particular mathematical models of various types: stochastic models, PDE models, dynamical system models, graph-theoretic models, algebraic models, and perhaps other types of models. They will use these models to exemplify the broad principles and methods that they will learn in this course, and they will use these models to build up a stock of models that they can call upon as examples of good modeling practice. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Fall).
MATH-722 3
This course will continue to expose students to the logical methodology of mathematical modeling. It will also provide them with numerous examples of mathematical models from various fields. (Prerequisite: MATH-622 or equivalent course.) Lecture 3 (Spring).
 
MATH Concentration Courses
6
 
MATH Elective
3
Second Year
MATH-751 3
Students in this course will study high-performance computing as a tool for solving problems related to mathematical modeling. Two primary objectives will be to gain experience in understanding the advantages and limitations of different hardware and software options for a diverse array of modeling approaches and to develop a library of example codes. The course will include extensive hands-on computational (programming) assignments. Students will be expected to have a prior understanding of basic techniques for solving mathematical problems numerically. (Prerequisite: MATH-602 or equivalent course.) Lecture 3 (Spring).
MATH-790 7
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
 
MATH Concentration Course
3
 
MATH Electives
6
Third Year
MATH-790 9
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
Fourth Year
MATH-790 6
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
Fifth Year
MATH-790 6
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Thesis (Fall, Spring, Summer).
Total Semester Credit Hours
60

Concentrations

Applied Inverse Problems

Course Sem. Cr. Hrs.
MATH-625 3
Most models in applied and social sciences are formulated using the broad spectrum of linear and nonlinear partial differential equations involving parameters characterizing specific physical characteristics of the underlying model. Inverse problems seek to determine such parameters from the measured data and have many applications in medicine, economics, and engineering. This course will provide a thorough introduction to inverse problems and will equip students with skills for solving them. The topics of the course include existence results, discretization, optimization formulation, and computational methods. (Prerequisites: MATH-431 or equivalent course or graduate student standing.) Lecture 3 (Fall).
MATH-633 3
This course will provide a general introduction to Lebesgue measure as applied to the real numbers, real-valued functions of a real variable, and the Lebesgue integral of such functions. It also covers topics in functional analysis relevant to application of measure theory to real-world problems. Students will be expected to read and understand proofs, and to demonstrate their understanding of topics by writing their own proofs of various facts. (Prerequisites: Graduate student standing in COS, GCCIS or KGCOE or B+ or better in MATH 432 or equivalent course.) Lecture 3 (Fall).
MATH-741 3
This course uses methods of applied mathematics in the solution of problems in physics and engineering. Models such as heat flow and vibrating strings will be formulated from physical principles. Characteristics methods, maximum principles, Green's functions, D'Alembert formulas, weak solutions and distributions will be studied. (Prerequisites: MATH-231 or equivalent course or graduate student standing in ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Spring).

Biomedical Mathematics

Course Sem. Cr. Hrs.
MATH-631 3
This course is a study of dynamical systems theory. Basic definitions of dynamical systems are followed by a study of maps and time series. Stability theory of solutions of differential equations is studied. Asymptotic behavior of solutions is investigated through limit sets, attractors, Poincaré–Bendixson theory, and index theory. The notion of local bifurcation is introduced and investigated. Chaotic systems are studied. (Prerequisites: (MATH-231 and (MATH 241 or MATH-241H)) or equivalent courses or graduate standing in ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Fall).
MATH-702 3
The course covers the solutions of linear systems by direct and iterative methods, numerical methods for computing eigenvalues, theoretical and numerical methods for unconstrained and constrained optimization, and Monte-Carlo simulation. (Prerequisite: MATH-602 or equivalent course and graduate standing.) Lecture 3 (Spring).
MATH-761 3
This course introduces areas of biological sciences in which mathematics can be used to capture essential interactions within a system. Different modeling approaches to various biological and physiological phenomena are developed (e.g., population and cell growth, spread of disease, epidemiology, biological fluid dynamics, nutrient transport, biochemical reactions, tumor growth, genetics). The emphasis is on the use of mathematics to unify related concepts. (Graduate Science) Lecture 3 (Fall).

Discrete Mathematics

Course Sem. Cr. Hrs.
CSCI-665 3
This course provides an introduction to the design and analysis of algorithms. It covers a variety of classical algorithms and their complexity and will equip students with the intellectual tools to design, analyze, implement, and evaluate their own algorithms. Note: students who take CSCI-261 or CSCI-264 may not take CSCI-665 for credit. (Prerequisites: (CSCI-603 and CSCI-605 and CSCI-661 with grades of B or better) or ((CSCI-243 or SWEN-262) and (CSCI-262 or CSCI-263)) or equivalent courses. This course is restricted to COMPSCI-MS, COMPSCI-BS/MS, or COMPIS-PHD students.) Lec/Lab 3 (Fall, Spring).
MATH-645 3
This course introduces the fundamental concepts of graph theory. Topics to be studied include graph isomorphism, trees, network flows, connectivity in graphs, matchings, graph colorings, and planar graphs. Applications such as traffic routing and scheduling problems will be considered. (This course is restricted to students with graduate standing in the College of Science or Graduate Computing and Information Sciences.) Lecture 3 (Fall).
MATH-646 3
This course introduces the fundamental concepts of combinatorics. Topics to be studied include counting techniques, binomial coefficients, generating functions, partitions, the inclusion-exclusion principle and partition theory. (This course is restricted to students in the ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Spring).

Dynamical Systems and Fluid Dynamics

Course Sem. Cr. Hrs.
MATH-631 3
This course is a study of dynamical systems theory. Basic definitions of dynamical systems are followed by a study of maps and time series. Stability theory of solutions of differential equations is studied. Asymptotic behavior of solutions is investigated through limit sets, attractors, Poincaré–Bendixson theory, and index theory. The notion of local bifurcation is introduced and investigated. Chaotic systems are studied. (Prerequisites: (MATH-231 and (MATH 241 or MATH-241H)) or equivalent courses or graduate standing in ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Fall).
MATH-741 3
This course uses methods of applied mathematics in the solution of problems in physics and engineering. Models such as heat flow and vibrating strings will be formulated from physical principles. Characteristics methods, maximum principles, Green's functions, D'Alembert formulas, weak solutions and distributions will be studied. (Prerequisites: MATH-231 or equivalent course or graduate student standing in ACMTH-MS or MATHML-PHD programs.) Lecture 3 (Spring).
MATH-831 3
The study of the dynamics of fluids is a central theme of modern applied mathematics. It is used to model a vast range of physical phenomena and plays a vital role in science and engineering. This course provides an introduction to the basic ideas of fluid dynamics, with an emphasis on rigorous treatment of fundamentals and the mathematical developments and issues. The course focuses on the background and motivation for recent mathematical and numerical work on the Euler and Navier-Stokes equations, and presents a mathematically intensive investigation of various models equations of fluid dynamics. (Prerequisite: MATH-741 or equivalent course.) Lecture 3 (Fall, Spring, Summer).

Geometry, Relativity and Gravitation

Course Sem. Cr. Hrs.
ASTP-660 3
This course is the first in a two-course sequence that introduces Einstein’s theory of General Relativity as a tool in modern astrophysics. The course will cover various aspects of both Special and General Relativity, with applications to situations in which strong gravitational fields play a critical role, such as black holes and gravitational radiation. Topics include differential geometry, curved spacetime, gravitational waves, and the Schwarzschild black hole. The target audience is graduate students in the astrophysics, physics, and mathematical modeling (geometry and gravitation) programs. (This course is restricted to students in the ASTP-MS, ASTP-PHD, MATHML-PHD and PHYS-MS programs.) Lecture 3 (Fall).
ASTP-861 3
This course is the second in a two-course sequence that introduces Einstein’s theory of General Relativity as a tool in modern astrophysics. The course will cover various aspects of General Relativity, with applications to situations in which strong gravitational fields play a critical role, such as black holes and gravitational radiation. Topics include advanced differential geometry, generic black holes, energy production in black-hole physics, black-hole dynamics, neutron stars, and methods for solving the Einstein equations. The target audience is graduate students in the astrophysics, physics, and mathematical modeling (geometry and gravitation) programs. (Prerequisite: ASTP-660 or equivalent course.) Lecture 3 (Spring).
MATH-702 3
The course covers the solutions of linear systems by direct and iterative methods, numerical methods for computing eigenvalues, theoretical and numerical methods for unconstrained and constrained optimization, and Monte-Carlo simulation. (Prerequisite: MATH-602 or equivalent course and graduate standing.) Lecture 3 (Spring).

Students are also interested in

Admissions and Financial Aid

This program is available on-campus only.

Offered Admit Term(s) Application Deadline STEM Designated
Full‑time Fall January 15 priority deadline, rolling thereafter Yes

Full-time study is 9+ semester credit hours. International students requiring a visa to study at the RIT Rochester campus must study full‑time.

Application Details

To be considered for admission to the Mathematical Modeling Ph.D. program, candidates must fulfill the following requirements:

English Language Test Scores

International applicants whose native language is not English must submit one of the following official English language test scores. Some international applicants may be considered for an English test requirement waiver.

TOEFL IELTS PTE Academic
100 7.0 70

International students below the minimum requirement may be considered for conditional admission. Each program requires balanced sub-scores when determining an applicant’s need for additional English language courses.

How to Apply Start or Manage Your Application

Cost and Financial Aid

An RIT graduate degree is an investment with lifelong returns. Ph.D. students typically receive full tuition and an RIT Graduate Assistantship that will consist of a research assistantship (stipend) or a teaching assistantship (salary).

Additional Information

Foundation Courses

Mathematical modeling encompasses a wide variety of scientific disciplines, and candidates from diverse backgrounds are encouraged to apply. If applicants have not taken the expected foundational course work, the program director may require the student to successfully complete foundational courses prior to matriculating into the Ph.D. program. Typical foundation course work includes calculus through multivariable and vector calculus, differential equations, linear algebra, probability and statistics, one course in computer programming, and at least one course in real analysis, numerical analysis, or upper-level discrete mathematics.

Contact

Admissions Contact
  • Laura Watts
  • Senior Associate Director
  • Office of Graduate and Part-Time Enrollment Services
  • Enrollment Management
  • 585‑475‑4901
  • Laura.Watts@rit.edu
Program Contact