Optical Science Minor

Overview for Optical Science Minor

Optical science techniques are used in a variety of consumer products (digital cameras, CD players), communication technologies (optical fibers), medical imaging (infrared imaging), and the sciences (surveillance, remote sensing, astronomical systems). This minor can be an important complement to studies in electrical and microelectronic engineering, the biological sciences, physics, chemistry, mathematics, technical photography, and various majors in the field of applied science and technology.

Notes about this minor:

  • Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
  • A grade of a C or better must be attained in all courses applied to the minor.
  • All prerequisites must be met prior to taking courses that require them.
  • Notations may appear in the curriculum chart below outlining pre-requisites, co-requisites, and other curriculum requirements (see footnotes).
  • At least nine semester credit hours of the minor must consist of specific courses not required by the student’s degree program.

The plan code for Optical Science Minor is OPTSCI-MN.

Curriculum for 2024-2025 for Optical Science Minor

Current Students: See Curriculum Requirements

Course
Prerequisites
MATH-181
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals. (Prerequisites: MATH-111 or (NMTH-220 and NMTH-260 or NMTH-272 or NMTH-275) or equivalent courses with a minimum grade of B-, or a score of at least 60% on the RIT Mathematics Placement Exam.) Lecture 4 (Fall, Spring).
MATH-182
This is the second in a two-course sequence. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates. (Prerequisites: C- or better in MATH-181 or MATH-181A or equivalent course.) Lecture 4 (Fall, Spring).
PHYS-211
This is a course in calculus-based physics for science and engineering majors. Topics include kinematics, planar motion, Newton's Laws, gravitation, work and energy, momentum and impulse, conservation laws, systems of particles, rotational motion, static equilibrium, mechanical oscillations and waves, and data presentation/analysis. The course is taught in a workshop format that integrates the material traditionally found in separate lecture and laboratory courses. (Prerequisites: C- or better in MATH-181 or equivalent course. Co-requisites: MATH-182 or equivalent course.) Lec/Lab 6 (Fall, Spring).
PHYS-212
This course is a continuation of PHYS-211, University Physics I. Topics include electrostatics, Gauss' law, electric field and potential, capacitance, resistance, DC circuits, magnetic field, Ampere's law, inductance, and geometrical and physical optics. The course is taught in a lecture/workshop format that integrates the material traditionally found in separate lecture and laboratory courses. (Prerequisites: (PHYS-211 or PHYS-211A or PHYS-206 or PHYS-216) or (MECE-102, MECE-103 and MECE-205) and (MATH-182 or MATH-172 or MATH-182A) or equivalent courses. Grades of C- or better are required in all prerequisite courses.) Lec/Lab 6 (Fall, Spring).
Electives
Students must complete one course from Group A, one course from Group B, one course from Group C and any two courses from Group D
Group A
   IMGS-321
This course introduces the analysis and design of optical imaging systems based on the ray model of light. Topics include reflection, refraction, imaging with lenses, stops and pupils, prisms, magnification and optical system design using computer software. (Prerequisites: PHYS-212 or equivalent course.) Lab 3, Lecture 2 (Fall).
   IMGS-322
Light waves having both amplitude and phase will be described to provide a foundation for understanding key optical phenomena such as interference, diffraction, and propagation. Starting from Maxwell's equations the course advances to the topic of Fourier optics. (Prerequisites: (PHYS-212 and IMGS-261) or (PHYS-283 and PHYS-320) or equivalent courses.) Lab 3, Lecture 2 (Spring).
   MCEE-515
An advanced course covering the physical aspects of micro- and nano-lithography. Image formation in projection and proximity systems are studied. Makes use of optical concepts as applied to lithographic systems. Fresnel diffraction, Fraunhofer diffraction, and Fourier optics are utilized to understand diffraction-limited imaging processes and optimization. Topics include illumination, lens parameters, image assessment, resolution, phase-shift masking, and resist interactions as well as non-optical systems such as EUV, maskless, e-beam, and nanoimprint. Lithographic systems are designed and optimized through use of modeling and simulation packages. Lab 3, Lecture 3 (Spring).
   PHPS-211
This required course will investigate advanced photographic technology, with an emphasis on the study of the components of photographic imaging systems. Geometrical optics, color management, printing technologies and video standards will also be studied. Working in a lab environment, students will evaluate how technology can be optimized and where its limitations might be found. (Prerequisites: PHPS-107 or equivalent course.) Lab 3, Lecture 2 (Fall).
   PHYS-365
In this course light waves having both amplitude and phase will be described to provide a foundation for understanding key optical phenomena such as interference, diffraction, and propagation. Starting from Maxwell's equations the course advances to the topic of Fourier optics. (Prerequisites: (PHYS-212 or PHYS-209 or PHYS-217) and PHYS-225, PHYS-283, PHYS-320 and (MATH-219 or MATH-221 or MATH-221H) or equivalent courses. Students in the PHYS-BS program are also required to complete PHYS-275 before taking this course.) Lab 3, Lecture 2 (Spring).
Group B
   IMGS-251
This course introduces the concepts of quantitative measurement of electromagnetic energy. The basic radiometric and photometric terms are introduced using calculus-based definitions. Governing equations for source propagation and sensor output are derived. Simple source concepts are reviewed and detector figures of merit are introduced and used in problem solving. The radiometric concepts are then applied to simple imaging systems so that a student could make quantitative measurements with imaging instruments. (Prerequisites: MATH-182 or MATH-182A or MATH-173 and PHYS-212 or equivalent courses.) Lab 3, Lecture 2 (Fall).
   PHYS-408
This course covers the semi-classical theory of the operation of a laser, characteristics and practical aspects of various laser systems, and some applications of lasers in scientific research. (Prerequisites: PHYS-365 or equivalent course. Students in the PHYS-BS program are also required to complete PHYS-275 prior to taking this course.) Lecture 3 (Fall).
Group C
   IMGS-451
This course provides an overview of the underlying physical concepts, designs, and characteristics of detectors used to sense electromagnetic radiation having wavelengths ranging from as short as X-rays to as long as millimeter radiation. The basic physical concepts common to many standard detector arrays will be reviewed. Some specific examples of detectors to be discussed include photomultipliers, micro channel plates, hybridized infrared arrays, positive-intrinsic-negative (PIN) detectors, and superconductor-insulator-superconductor (SIS) mixers. The use of detectors in fields such as astronomy, high energy physics, medical imaging and digital imaging will be discussed. (Prerequisites: IMGS-251 and IMGS-341 or equivalent courses.) Lecture 3 (Spring).
   IMGS-528
The purpose of this course is to provide the student with hands-on experience in building a CCD camera. The course provides the basics of CCD operation including an overview, CCD clocking, analog output circuitry, cooling, and evaluation criteria. (Prerequisites: PHYS-111 or PHYS-211 or PHYS-207 or PHPS-106) Lab 6, Lecture 1 (Fall).
   IMGS-542
This course is an introduction to the techniques used for the testing of solid state imaging detectors such as CCDs (charge coupled device), CMOS, (complementary metal oxide semiconductor), and infrared arrays. Focal plane array users in industry, government and academia need to ensure that key operating parameters for such devices either fall within an operating range or that the limitation to the performance is understood. This is a hands-on course where the students will measure the performance parameters of a particular camera in detail. (Prerequisites: PHYS-111 or PHYS-211 or PHYS-207 or PHPS-106) Lab 6, Lecture 1 (Spring).
Group D
   CHMP-442
 Physical Chemistry II
   EEEE-374
The course provides the foundations to time varying Electromagnetic (EM) fields, and is a study of propagation, reflection and transmissions of electromagnetic waves in unbounded regions and in transmission lines. Topics include the following: Maxwell’s equations for time varying fields, time harmonic EM fields, wave equation, uniform plane waves, polarization, Poynting theorem and power, reflection and transmission in multiple dielectrics at normal incidence and at oblique incidence, TEM wave in transmission lines, transients on transmission lines, pulse and step excitations, resistive, reactive and complex loads, sinusoidal steady state solutions, standing waves, input impedance, the Smith Chart, power and power division and impedance matching techniques, TE and TM waves in rectangular waveguides, experiments using state-of-art RF equipment illustrating fundamental wave propagation and reflection concepts, design projects with state-of-art EM modeling tools. (Prerequisites: MATH-221 and MATH-231 and PHYS-212 or PHYS-208 and PHYS-209 or equivalent course.) Lab 3, Lecture 4 (Fall, Spring).
   IMGS-221
This course presents an overview of the organization and function of the human visual system and some of the psychophysical techniques used to study visual perception. (This course is restricted to IMGS-BS, DIGCIME-BS, IMGS-MN and SCIMGS-IM students.) Lecture 3 (Fall, Spring).
   IMGS-322
Light waves having both amplitude and phase will be described to provide a foundation for understanding key optical phenomena such as interference, diffraction, and propagation. Starting from Maxwell's equations the course advances to the topic of Fourier optics. (Prerequisites: (PHYS-212 and IMGS-261) or (PHYS-283 and PHYS-320) or equivalent courses.) Lab 3, Lecture 2 (Spring).
   IMGS-341
This course introduces the principles of how light interacts with matter. The principles of atomic physics as applied to simple atoms are reviewed and extended to multi-electron atoms to interpret their spectra. Molecular structure and spectra are covered in depth, including the principles of lasers. The concepts of statistical physics concepts are introduced and applied to the structure of crystalline solids, their band structure and optical properties. These concepts are then used to understand electronic imaging devices, such as detectors. (Prerequisite: PHYS-213 or equivalent course.) Lecture 3 (Spring).
   IMGS-442
The purpose of this course is to develop an understanding and ability to model signal and noise within the context of imaging systems. A review of the modulation transfer function is followed by a brief review of probability theory. The concept of image noise is then introduced. Next, random processes are considered in both the spatial and frequency domains, with emphasis on the autocorrelation function and power density spectrum. Finally, the principles of random processes are applied to signal and noise transfer in multistage imaging systems. At the completion of the course the student will be able to model signal and noise transfer within a multistage imaging system. (Prerequisites: IMGS-211 and IMGS-261 and IMGS-341 and IMGS-322 or equivalent courses.) Lecture 4 (Fall).
   MCEE-515
An advanced course covering the physical aspects of micro- and nano-lithography. Image formation in projection and proximity systems are studied. Makes use of optical concepts as applied to lithographic systems. Fresnel diffraction, Fraunhofer diffraction, and Fourier optics are utilized to understand diffraction-limited imaging processes and optimization. Topics include illumination, lens parameters, image assessment, resolution, phase-shift masking, and resist interactions as well as non-optical systems such as EUV, maskless, e-beam, and nanoimprint. Lithographic systems are designed and optimized through use of modeling and simulation packages. Lab 3, Lecture 3 (Spring).
   PHYS-213
This course provides an introductory survey of elementary quantum physics, as well as basic relativistic dynamics. Topics include the photon, wave-particle duality, deBroglie waves, the Bohr model of the atom, the Schrodinger equation and wave mechanics, quantum description of the hydrogen atom, electron spin, and multi-electron atoms. (Prerequisites: PHYS-209 or PHYS-212 or PHYS-217or equivalent course.) Lecture 3 (Fall, Spring, Summer).
   PHYS-412
This course is an advanced treatment of electrodynamics including propagating waves, electromagnetic radiation, and relativistic electrodynamics. Field theory is treated in terms of scalar and vector potentials. Wave solutions of Maxwell's equations, the behavior of electromagnetic waves at interfaces, guided electromagnetic waves, and simple radiating systems will be covered. Relativistic electrodynamics will be introduced including field tensors and four vector notation. (Prerequisites: PHYS-411 or equivalent course.) Lecture 3 (Fall).
   PHPS-516
This course is designed to teach students how to operate and create images with a scanning electron microscope. Emphasis is on the understanding and optimization of the instrumental and photographic parameters associated with the SEM. A final poster is produced that examines and documents a single sample. (Prerequisites: PHPS-202 or equivalent course.) Lab 4, Lecture 1 (Spring).

 

Contact

Program Contact