Huda Saadeh
Assistant Professor
RIT Dubai
Currently Teaching
CSEC-201
Programming for Information Security
3 Credits
This course builds upon basic programming skills to give students the programming knowledge necessary to study computing security. Students will be introduced to network programming, memory management, and operating system calls along with associated security concepts. Specific focus will placed on understanding the compilation process and on the relation between high-level programming concepts and low-level programming concepts, culminating in identifying and exploiting memory corruption vulnerabilities.
CSEC-470
Covert Communications
3 Credits
Covert communications have been employed in the past in traditional information warfare. Today with huge amounts of digital information exchanged in our cyber space and covert communication will become a potential tool for information warfare inside the space. Students will be introduced to the history, theory, methodology and implementation of various kinds of covert communications. Students will explore future techniques and uses of covert communications. More specifically students will explore possible uses of covert communications in the management of botnets. Students will conduct research in this topic area and will write a research paper on their research. Students will be required to submit their paper for publication in a peer-reviewed venue.
CSEC-490
Capstone in Cybersecurity
3 Credits
This is a capstone course for students in the cybersecurity program. Students will review a series of short modules on topics such as teamwork, project management, report writing, and presentations, and will work in teams to apply their knowledge and skills to real-world projects in various areas of cybersecurity. Projects may require performing security analysis of systems, networks, software, policies, etc., devising and implementing security solutions in real-world applications. (4th-year status and departmental approval)
CSEC-499
Cooperative Education in CSEC
0 Credits
Students will gain experience and a better understanding of the application of technologies discussed in classes by working in the field of computing security. Students will be evaluated by their employer. If a transfer student, they must have completed one term in residence at RIT and be carrying a full academic load.
CSEC-600
Introduction to Computing Security
3 Credits
This is a graduate level introduction to the field of computing security. An extensive overview of various branches of computing security areas will be presented including concepts, issues, and tools that are critical in solving problems in computing security domain. Students will have opportunities to learn essential techniques in protecting systems and network infrastructures, analyzing and monitoring potential threats and attacks, devising and implementing security solutions for organizations large or small.
CSEC-750
Covert Communications
3 Credits
Students will be introduced to the history, theory, methodology and implementation of various kinds of covert communications. Students will explore future techniques and uses of covert communications. More specifically students will explore possible uses of covert communications in the management of botnets. To be successful in this course students should be knowledgeable in networking, systems, and security technologies.
CSEC-790
MS Thesis
1 - 6 Credits
This course is one of the capstone options in the MS in Computing Security program. It offers students the opportunity to investigate a selected topic and make an original contribution which extends knowledge within the computing security domain. Students must submit an acceptable proposal to a thesis committee (chair, reader, and observer) before they may be registered by the department for the MS Thesis. Students must defend their work in an open thesis defense and complete a written report of their work before a pass/fail grade is awarded. As part of their original work, students are expected to write and submit an article for publication in a peer reviewed journal or conference.
ISTE-499
Undergraduate Co-op
0 Credits
Students perform paid, professional work related to their program of study. Students work full-time during the term they are registered for co-op. Students must complete a student co-op work report for each term they are registered; students also are evaluated each term by their employer. A satisfactory grade is given for co-op when both a completed student co-op report and a corresponding employer report that indicates satisfactory student performance are received.
ISTE-500
Senior Development Project I
3 Credits
The first course in a two-course, senior level, system development capstone project. Students form project teams and work with sponsors to define system requirements. Teams then create architectures and designs, and depending on the project, also may begin software development. Requirements elicitation and development practices introduced in prior coursework are reviewed, and additional methods and processes are introduced. Student teams are given considerable latitude in how they organize and conduct project work.
ISTE-501
Senior Development Project II
3 Credits
The second course in a two-course, senior level, system development capstone project. Student teams complete development of their system project and package the software and documentation for deployment. Usability testing practices introduced in prior course work are reviewed, and additional methods and processes are introduced. Teams present their developed system and discuss lessons learned at the completion of the course.
NSSA-241
Introduction to Routing and Switching
3 Credits
This course provides an introduction to wired network infrastructures, topologies, technologies, and the protocols required for effective end-to-end communication. Basic security concepts for TCP/IP based technologies are introduced. Networking layers 1, 2, and 3 are examined in-depth using the International Standards Organization’s Open Systems Interconnection and TCP/IP models as reference. Course topics focus on the TCP/IP protocol suite, the Ethernet LAN protocol, switching technology, and routed and routing protocols common in TCP/IP networks. The lab assignments mirror the lecture content , providing an experiential learning component for each topic covered.