Kevser Ovaz Akpinar Headshot

Kevser Ovaz Akpinar

Assistant Professor of Computing Security

RIT Dubai

Kevser Ovaz Akpinar

Assistant Professor of Computing Security

RIT Dubai

Currently Teaching

CSEC-140
3 Credits
This course will introduce many fundamental cybersecurity concepts. The course will teach students to think about information systems using an adversarial mindset, evaluate risk to information systems, and introduce controls that can be implemented to reduce risk. Topics will include authentication systems, data security and encryption, risk management and security regulatory frameworks, networking and system security, application security, organizational and human security considerations, and societal implications of cybersecurity issues. These topics will be discussed at an introductory level with a focus on applied learning through hands-on virtual lab exercises.
CSEC-380
3 Credits
This course is designed to give students a foundation in the theories and practice relating to web application security. The course will introduce students to the concepts associated with deploying and securing a typical HTTP environment as well as defensive techniques they may employ.
CSEC-461
3 Credits
This course will discuss the areas of liability, exposure, opportunity, ability and function of various weaknesses in computer security. The course will cover forms of attack and the methods to detect and defend against them. The issues and facilities available to both the intruder and administrator will be examined and evaluated with appropriate out-of-class laboratory exercises to illustrate their effect.
CSEC-462
3 Credits
This course investigates the many facets of network security and forensics. Students will examine the areas of intrusion detection, evidence collection, network auditing, network security policy design and implementation as well as preparation for and defense against attacks. The issues and facilities available to both the intruder and data network administrator will be examined and evaluated with appropriate laboratory exercises to illustrate their effect.
CSEC-471
3 Credits
The process and methodologies employed in negotiating a contract, performing a penetration test, and presenting the results will be examined and exercised. Students will be exposed to tools and techniques employed in penetration testing. Assignments will explore the difficulties and challenges in planning for and conducting an assessment exposing potential vulnerabilities. Students will develop a metric used to evaluate the security posture of a given network and will develop a coherent and comprehensive report of their findings to present to their client. Particular attention will be paid to the ramifications of the findings toward the security of the targets.
CSEC-499
0 Credits
Students will gain experience and a better understanding of the application of technologies discussed in classes by working in the field of computing security. Students will be evaluated by their employer. If a transfer student, they must have completed one term in residence at RIT and be carrying a full academic load.
CSEC-742
3 Credits
The importance of effective security policies and procedures coupled with experience and practice is emphasized and reinforced through research and practical assignments. Organization and management of security discipline and response to threats is studied. Case studies of effective and failed security planning and implementation will be examined and analyzed. The issues influencing proper and appropriate planning for security and response to attacks will be studied. To be successful in this course students should be knowledgeable in networking, systems, and security technologies.
CSEC-790
1 - 6 Credits
This course is one of the capstone options in the MS in Computing Security program. It offers students the opportunity to investigate a selected topic and make an original contribution which extends knowledge within the computing security domain. Students must submit an acceptable proposal to a thesis committee (chair, reader, and observer) before they may be registered by the department for the MS Thesis. Students must defend their work in an open thesis defense and complete a written report of their work before a pass/fail grade is awarded. As part of their original work, students are expected to write and submit an article for publication in a peer reviewed journal or conference.
GCIS-123
4 Credits
A first course introducing students to the fundamentals of computational problem solving. Students will learn a systematic approach to problem solving, including how to frame a problem in computational terms, how to decompose larger problems into smaller components, how to implement innovative software solutions using a contemporary programming language, how to critically debug their solutions, and how to assess the adequacy of the software solution. Additional topics include an introduction to object-oriented programming and data structures such as arrays and stacks. Students will complete both in-class and out-of-class assignments.
GCIS-124
4 Credits
A second course that delves further into computational problem solving, now with a focus on an object-oriented perspective. There is a continued emphasis on basic software design, testing & verification, and incremental development. Key topics include theoretical abstractions such as classes, objects, encapsulation, inheritance, interfaces, polymorphism, software design comprising multiple classes with UML, data structures (e.g. lists, trees, sets, maps, and graphs), exception/error handling, I/O including files and networking, concurrency, and graphical user interfaces. Additional topics include basic software design principles (coupling, cohesion, information expert, open-closed principle, etc.), test driven development, design patterns, data integrity, and data security.

Website last updated: July 17, 2024